

Unicenter

TCPaccess Communications Server
RPC/XDR Programmer Reference

Version 6.0

The Software That Manages eBusiness

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Introduction to RPC/XDR
Remote Procedure Call (RPC) .. 1–1
External Data Representation (XDR)... 1–2

Chapter 2: Using Remote Procedure Calls
RPC Layers.. 2–2

The Highest Layer... 2–2
The Middle Layer.. 2–2
The Lowest Layer.. 2–3

The RPC Paradigm... 2–3
Higher Layers of RPC.. 2–4

Highest Layer .. 2–4
RPC Service Library.. 2–4
Intermediate Layer.. 2–6

Unique RPC Procedure Definition .. 2–6
The callrpc Library Routine.. 2–7
Registering RPC Calls ... 2–8

Assigning Program Numbers.. 2–10
Passing Arbitrary Data Types ... 2–11

Prefabricated Building Blocks .. 2–12
Lowest Layer of RPC ... 2–14

More on the Server Side ... 2–14
The Server Gets a Transport Handle... 2–15
The Server Calls pmap_unset... 2–16
The Program Number is Associated with the nuser Procedure.. 2–16
Handling an RPC Program that Receives Data ... 2–16

Memory Allocation with XDR... 2–17
The Calling Side .. 2–18

The CLIENT Pointer .. 2–19

Contents iii

Useful RPC Features.. 2–21
Select on the Server Side .. 2–21
Broadcast RPC... 2–22

Broadcast RPC Synopsis ... 2–22
Batching.. 2–23

Server Batching .. 2–23
Client Batching... 2–25

Authentication... 2–27
UNIX Authentication .. 2–27
DES Authentication ... 2–30

Using Inetd .. 2–33
Programming Examples.. 2–34

Versions.. 2–34
TCP.. 2–35
Callback Procedures ... 2–38

Client ... 2–40
Server... 2–41

Chapter 3: XDR: Technical Notes
Justification ... 3–2

Writer.. 3–2
Reader... 3–2

Execution Results... 3–3
Network Pipes.. 3–3
Revised Writer.. 3–4
Revised Reader... 3–4
Revised Execution Results.. 3–5

A Canonical Standard .. 3–5
The XDR Library ... 3–6

The xdr_long Primitive ... 3–7
Direction Independence.. 3–7

XDR Library Primitives... 3–9
Number Filters .. 3–9
Floating Point Filters .. 3–10
Enumeration Filters .. 3–10
No Data .. 3–11
Constructed Data Type Filters .. 3–11

Strings.. 3–11
Byte Arrays ... 3–12
Arrays.. 3–13

iv RPC/XDR Programmer's Reference

Opaque Data... 3–16
Fixed Sized Arrays... 3–16
Discriminated Unions.. 3–17
Pointers.. 3–18

Non-Filter Primitives.. 3–20
XDR Operation Directions ... 3–20
XDR Stream Access... 3–20

Standard I/O Streams ... 3–21
Memory Streams .. 3–21
Record (TCP/IP) Streams ... 3–21

XDR Stream Implementation .. 3–23
The XDR Object .. 3–23

Advanced Topics.. 3–25
Linked Lists.. 3–25

Serialized Objects ... 3–26
Hints for Writing XDR Routines... 3–26
A Non-Recursive Example .. 3–27

Tasks Performed .. 3–28

Chapter 4: Using rpcgen
What rpcgen Does .. 4–1

How rpcgen Works... 4–2
Converting Local Procedures into Remote Procedures .. 4–3

A printmessage Example ... 4–3
Remote Procedures Steps... 4–4

Determine Procedure Input and Output Types... 4–4
The Remote Procedure .. 4–5
Declare the Main Client Program .. 4–6

Completing the Process.. 4–7
Generating XDR Routines... 4–8

Protocol Description File.. 4–8
XDR Routines for Converting Data Types .. 4–9

The READDIR Procedure ... 4–9
The Client-Side Program to Call the Server ... 4–10
Compiling and Running ... 4–11

Contents v

Testing the Client and Server Procedures Together .. 4–12
The C Preprocessor .. 4–12

Symbols That May Be Defined.. 4–12
rpcgen Preprocessing ... 4–13

rpcgen Programming Notes ... 4–13
Timeout Changes .. 4–13
Handling Broadcast on the Server Side ... 4–14
Other Information Passed to Server Procedures .. 4–15

The RPC Language .. 4–16
Definitions.. 4–16
Structures ... 4–16
Unions .. 4–17
Enumerations .. 4–18
Typedefs... 4–18
Constants.. 4–19
Programs .. 4–19
Declarations ... 4–20

Simple Declarations... 4–20
Fixed-length Array Declarations ... 4–20
Variable-Length Array Declarations... 4–21
Pointer Declarations .. 4–21

Special Cases.. 4–22
Booleans .. 4–22
Strings.. 4–22
Opaque Data... 4–23
Voids.. 4–23

vi RPC/XDR Programmer's Reference

Appendix A: RPC Manual Pages
RPC Library Functions ...A–1
auth_destroy()..A–2
authnone_create()..A–2
authunix_create()...A–3
authunix_create_default() ..A–3
callrpc() ...A–4
clnt_broadcast() ...A–5
clnt_call() ..A–6
clnt_control() ..A–7
clnt_create() ..A–8
clnt_destroy() ...A–8
clnt_freeres() ..A–9
clnt_geterr() ..A–9
clnt_pcreateerror()...A–10
clnt_perrno() ..A–10
clnt_perror() ...A–11
clnt_specreaterror() ...A–11
clnt_sperrno()...A–12
clnt_sperror()..A–12
clntraw_create() ...A–13
clnttcp_create()...A–14
clntudp_create()...A–15
get_myaddress() ..A–16
getrpcbyname()..A–16
getrpcbynumber() ...A–17
mvs_svc_run() ...A–18
pmap_getmaps()..A–18
pmap_getport()..A–19
pmap_rmtcall() ..A–20
pmap_set()..A–21
pmap_unset() ...A–22
registerrpc()..A–23
rpc_createerr ..A–24
svc_destroy() ..A–24
svc_fdset ...A–25
svc_freeargs() ...A–25
svc_getargs() ..A–26
svc_getcaller() ..A–26
svc_getreq() ..A–27
svc_getreqset() ...A–27

Contents vii

svc_register().. A–28
svc_run()... A–29
svc_sendreply() ... A–29
svc_unregister() ... A–30
svcerr_weakauth() .. A–30
svcerr_auth() .. A–31
svcerr_decode() ... A–31
svcerr_noproc().. A–32
svcerr_noprog() ... A–32
svcerr_progvers() .. A–33
svcerr_systemerr()... A–33
svcfd_create()... A–34
svcraw_create().. A–34
svctcp_create() ... A–35
svcudp_create() ... A–36
xdr_accepted_reply() .. A–36
xdr_authunix_parms().. A–37
xdr_callhdr() .. A–37
xdr_callmsg() ... A–38
xdr_opaque_auth().. A–38
xdr_pmap() .. A–39
xdr_pmaplist() ... A–40
xdr_rejected_reply().. A–40
xdr_replymsg() .. A–41
xprt_register() .. A–41
xprt_unregister() ... A–42

Appendix B: XDR Manual Pages
XDR Library Calls ..B–1
xdr_array() ..B–2
xdr_bool() ..B–3
xdr_bytes() ..B–3
xdr_char() ..B–4

xdr_destroy() ...B–4
xdr_double() ..B–5

xdr_enum() ...B–5
xdr_float()..B–6
xdr_free() ...B–6
xdr_getpos() ..B–7
xdr_inline()..B–7

viii RPC/XDR Programmer's Reference

xdr_int() ...B–8
xdr_long() ..B–8
xdr_opaque()...B–9
xdr_pointer() ...B–10
xdr_reference()..B–11
xdr_setpos()...B–12
xdr_short()...B–12
xdr_string()..B–13
xdr_u_char()..B–13
xdr_u_int()...B–14
xdr_u_long()..B–14
xdr_u_short() ..B–15
xdr_union() ...B–16
xdr_vector() ...B–17
xdr_void()..B–17
xdr_wrapstring() ..B–18
xdrmem_create()...B–18
xdrrec_create() ..B–19
xdrrec_endofrecord() ...B–20
xdrrec_eof() ...B–20
xdrrec_skiprecord()..B–21
xdrstdio_create()...B–21

Appendix C: RPC Library Header Files
Header Files ... C–1

Appendix D: RPC Log
RPC Log Interface ...D–1
Source for Default rpclog ...D–1

Appendix E: Sample JCL
Nonreentrant User Program: C/370 Compiler ..E–2
Reentrant User Program: C/370 Compiler...E–3
Nonreentrant User Program: SAS/C Compiler...E–4
Reentrant User Program: SAS/C Compiler ...E–5

Contents ix

Appendix F: Sample RPC Programs
Sample Programs ... F–2

To Run the Sample Message Programs ... F–2
To Run the Sample Sort Programs ... F–2

Sample Programs’ Source Code... F–3
MSGSVC... F–3
MSGCLNT ... F–5
SORTCLNT.. F–9

Index

x RPC/XDR Programmer's Reference

Chapter

1 Introduction to RPC/XDR

This chapter introduces and defines the Unicenter TCPaccess Communications
Server RPC/XDR packages. It introduces the RPC/XDR packages and defines
the terms Remote Procedure Call (RPC) and External Data Representation
(XDR).

The Remote Procedure Call (RPC) package defines a procedure calling model for
distributed applications. The External Data Representation (XDR) defines a
standard representation for data in the network to support heterogeneous
network computing.

Unicenter TCPaccess RPC/XDR lets you create custom distributed applications
and network services using the mainframe and the resources of the network.
Both client and RPC functionality exist in this implementation. This means an
application on the mainframe using RPC/XDR can not only provide resources to
the network, but can access resources and initiate activity on the network as well.
RPC/XDR includes both RPC and XDR library routines.

The C language interface to the RPC/XDR library is compatible with the UNIX
operating system reference standard, which facilitates development of network
services on the mainframe. You can select from the RPC package a TCP or UDP
transport on which to run your application.

Remote Procedure Call (RPC)
RPC is an independent set of functions used for accessing remote nodes on a
network. Using RPC network services, applications can be created in much the
same way a programmer writes software for a single computer using local
procedure calls. The RPC protocols extend the concept of local procedure calls
across the network. This means that you can develop distributed applications for
transparent execution across a network.

Introduction to RPC/XDR 1–1

External Data Representation (XDR)

External Data Representation (XDR)
XDR is a vendor-independent method of representing data. By using the XDR
standard data representation convention, systems do not have to understand and
translate every data format that may exist on the network; there is only the one
convention. Data is translated into XDR format before it is sent over the network
and, at the reception point, is translated into the data convention used there. This
means that you can integrate new computer architectures into the network
without requiring the updating of translation routines.

The new architecture simply includes a routine that translates its data format
into XDR format and the new member of the network is ready to go. Using XDR,
data can be accessed or exchanged among machines of various hardware and
software architectures without any translation or interpretation problems. Word
lengths, byte ordering, and floating-point representations appear to be the same
to all nodes in the network.

1–2 RPC/XDR Programmer's Reference

Chapter

2 Using Remote Procedure Calls

This chapter describes the use of Remote Procedure Calls (RPCs). It includes
these sections:

■ Higher Layers of RPC—Describes the highest and intermediate layers of
RPC

■ Lowest Layer of RPC—Describes the lowest level of RPC programs

■ Useful RPC Features—Discusses some use of select on the server side,
broadcast RPC, batching and authentication

■ Programming Examples—Provides examples of the use of version numbers,
a Unix remote file copy program, and callback procedures

This guide assumes a working knowledge of network theory. It is intended for
programmers who wish to write network applications using Remote Procedure
Calls (RPC), and who want to understand the RPC mechanisms usually hidden
by the rpcgen protocol compiler rpcgen is described in detail in Using rpcgen.

Note: Before attempting to write a network application, or to convert an existing
non-network application to run over the network, you may want to understand
the material in this chapter. However, for most applications, you can bypass the
material presented here by using rpcgen. The section Generating XDR Routines
contains the complete source for a working RPC service—a remote directory
listing service that uses rpcgen to generate XDR routines as well as client and
server stubs.

Remote Procedure Calls (RPCs) are high-level communications mechanisms.
RPC presumes the existence of low-level networking mechanisms (such as
TCP/IP and UDP/IP), and implements on them a logical client-to-server
communications system designed specifically for the support of network
applications.

With RPC, the client makes a procedure call to send a data packet to the server.
When the packet arrives, the server calls a dispatch routine, performs whatever
service is requested, sends back the reply, and returns the procedure call to the
client.

Using Remote Procedure Calls 2–1

RPC Layers

RPC Layers
The RPC interface can be seen as being divided into three layers.

The Highest Layer

The highest layer is totally transparent to the operating system, machine, and
network on which it is run. Think of this level as a way of using RPC, rather than
as a part of RPC itself.

Programmers who write RPC routines usually make this layer available to others
by way of a simple C language front end that entirely hides the networking.

At this level, a program can simply make a call to rnusers(), a C routine that
returns the number of users on a remote machine. Users are not explicitly aware
of using RPC—they simply call a procedure, just as they would call malloc().

The Middle Layer

The middle layer is really the heart of RPC. Here, the user does not need to
consider details about sockets, the UNIX system, or other low-level
implementation mechanisms. They simply make remote procedure calls to
routines on other machines. The inherent value of this layer is its simplicity. It
allows RPC to pass the “hello world” test.

The middle layer routines are used for most applications. RPC calls are made
with the system routines registerrpc(), callrpc(), and svc_run().

The first two of these are the most fundamental: registerrpc() obtains a unique
system-wide procedure identification number, and callrpc() actually executes a
remote procedure call. At the middle layer, a call to rnusers() is implemented by
way of these two routines.

The middle layer, however, is rarely used in serious programming due to its
simplicity. It does not allow timeout specifications or the choice of transport. It
allows no UNIX process control or flexibility in case of errors. It does not support
multiple types of call authentication. You rarely need all these types of control,
but one or two of them is often necessary.

2–2 RPC/XDR Programmer's Reference

The RPC Paradigm

The Lowest Layer

The lowest layer lets you control these details, and for that reason it is often
necessary. Programs written at this level are also most efficient, but this is
usually not an issue, since RPC clients and servers rarely generate heavy
network loads.

Note: Although this document discusses only the interface to C, remote
procedure calls can be made from any language. Even though this document
discusses how RPC is used to communicate between processes on different
machines, RPC works just as well for communication between different
processes on the same machine.

The RPC Paradigm
The following is a diagram of the RPC paradigm:

RPC client
program

RPC forwarder
service
registered

RPC
server

custom RPC
application

Mainframe
Channel
interface
device

Remote
workstation

1 2

3

1. RPC client program issues an RPC call to a remote procedure.

2. RPC forwarder recognizes call to a mainframe service and forwards RPC call
over the channel.

3. Mainframe RPC server accepts the call and forwards the request to the RPC
application.

Using Remote Procedure Calls 2–3

Higher Layers of RPC

Higher Layers of RPC
This section describes the highest and middle layers of RPC.

Highest Layer

Suppose you are writing a program that needs to know how many users are
logged into a remote machine. You can do this by calling the RPC library routine
rnusers(), as illustrated here:
#include <stdio.h>

main(argc, argv)
 int argc;

 char **argv;
{
 int num;

 if (argc != 2)
 {
 fprintf(stderr, "usage: rnusers hostname\n");
 exit(1);
 }
 if ((num = rnusers(argv[1])) < 0)
 {
 fprintf(stderr, "error: rnusers\n");
 exit(-1);
 }
 printf("%d users on %s\n", num, argv[1]);
 exit(0);
}

RPC Service Library

On a UNIX system, RPC library routines such as rnusers() are in the RPC
services library librpcsvc.a. Therefore, the previous program should be compiled
on UNIX using this format:
example% cc program.c -lrpcsvc

Note: Unicenter TCPaccess RPC/XDR does not provide this RPC services
library. However, applications may be written on MVS, which accesses these
functions on other machines.

2–4 RPC/XDR Programmer's Reference

Higher Layers of RPC

Some of the available RPC service library routines are listed in the following
table:

Routine Description

rnusers Returns number of users on remote machine.

rusers Returns information about users on remote machine.

have disk Determines if remote machine has disk.

rstats Gets performance data from remote kernel.

rwall Writes to specified remote machines.

yppasswd Updates user password in Yellow Pages.

Other RPC services, such as ether(), mount(), and spray(), are not available to the
C programmer as library routines. They do, however, have RPC program
numbers (which are discussed in the next section), so they can be invoked with
callrpc(). Most of the other RPC services also have compilable rpcgen(1) protocol
description files.

Note: The rpcgen protocol compiler radically simplifies the process of
developing network applications. See the chapter “Using rpcgen” for detailed
information about rpcgen and the rpcgen protocol description file. rpcgen is not
currently provided with RPC/XDR.

Using Remote Procedure Calls 2–5

Higher Layers of RPC

Intermediate Layer

The simplest interface, which explicitly makes RPC calls, uses the functions
callrpc() and registerrpc(). Using this method, the number of remote users can be
found by using this program. It can be used with the RPC/XDR code supplied if
the #defines for the ruser program are used.
#include <stdio.h>
#include <rpc.h>
/* #include <rusers.h> /* not included with RPC/XDR */

#define RUSERSPROG 10002
#define RUSERSVERS 2
#define RUSERPROC-NUM 1

main(argc, argv)
 int argc; char **argv;
{
 unsigned long nusers;
 int stat;

 if (argc != 2)
 {
 fprintf(stderr, "usage: (char) nusers hostname\n");
 exit(-1);
 }

 if (stat = callrpc(argv[1], RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
 xdr_void, 0, xdr_u_long, &nusers) != 0)
 {
 clnt_perrno(stat);
 exit(1);
 }
 printf("%d users on %s\n", nusers, argv[1]);
 exit(0);
}

Unique RPC Procedure Definition

Each RPC procedure is uniquely defined by a program number, version number,
and procedure number.

■ The program number specifies a group of related remote procedures, each of
which has a different procedure number

■ Each program also has a version number, so when a minor change is made
to a remote service, a new program number does not have to be assigned

■ Whenever a new procedure is added to a program, it is also given an
identifying number

When you want to call a procedure to find the number of remote users, you look
up the appropriate program, version, and procedure numbers in a manual, just
as you look up the name of a memory allocator when you want to allocate
memory.

2–6 RPC/XDR Programmer's Reference

Higher Layers of RPC

The callrpc Library Routine

The simplest way of making remote procedure calls is with the RPC library
routine callrpc(). The arguments are:

argv(1) The name of the remote server machine.

RUSERSPROG The program.

RUSERSVERS The version.

RUSERSPROC_NUM The procedure number. Together with the
program and version numbers, this defines the
procedure to be called.

xdr_void An XDR filter.

0 An argument to be encoded and passed to the
remote procedure.

xdr_u_long A filter for decoding the results returned by the
remote procedure.

&nusers A pointer to the place where the procedure’s
results are to be stored. Multiple arguments and
results are handled by embedding them in
structures.

If callrpc() completes successfully, it returns zero; otherwise, it returns a nonzero
value. The return codes (cast into an integer) are found in clnt.h.

Since data types may be represented differently on different machines, callrpc()
needs both the type of the RPC argument, as well as a pointer to the argument
itself (and similarly for the result).

For RUSERSPROC_NUM, the return value is an unsigned long so callrpc() has
xdr_u_long() as its first return parameter, which says that the result is of type
unsigned long and &nusers is its second return parameter, which is a pointer to
where the long result is placed. Since RUSERSPROC_NUM takes no argument,
the argument parameter of callrpc() is xdr_void().

If callrpc() gets no answer after several tries to deliver a message, it returns an
error. The delivery mechanism is User Datagram Protocol (UDP). Methods for
adjusting the number of retries or for using a different protocol require you to
use the lower layer of the RPC library, discussed later in this document.

Using Remote Procedure Calls 2–7

Higher Layers of RPC

The remote server procedure corresponding to the previous example might look
like this:
char *
nuser(indata)
 char *indata;
{
 unsigned long nusers;

 .
 . Code here to compute the number of users
 . and place result in variable nusers.
 .
 return((char *)&nusers);
}

It takes one argument: a pointer to the input of the remote procedure call
(ignored in the example), and it returns a pointer to the result.

Note: In the current version of C, character pointers are the generic pointers, so
both the input argument and the return value are cast to (char *).

Registering RPC Calls

Normally, a server registers all of the RPC calls it plans to handle, and then goes
into an infinite loop waiting to service requests.

In this example, there is only a single procedure to register, so the main body of
the server looks like this:
#include <stdio.h>
#include <rpc.h>
#include <rusers.h> /* (not provided with RPC/XDR) */
char *nuser();

main()
{
 registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM, nuser, xdr_void,
xdr_u_long);
 svc_run();
 fprintf(stderr, "error: svc_run returned!\n");
 exit(1);
}

Note: This assumes that a program nuser exists in the RPC library. It is not
provided as part of the TCPaccess RPC/XDR.

2–8 RPC/XDR Programmer's Reference

Higher Layers of RPC

registerrpc Arguments The registerrpc() routine registers a C procedure as corresponding to a given
RPC procedure number. It has the following arguments:

RUSERPROG The program of the remote procedure to be

registered

RUSERSVERS The version of the remote procedure to be
registered

RUSERSPROC_NUM The procedure number of the remote procedure
to be registered

nuser The name of the local procedure that implements
the remote procedure

xdr_void() XDR filters for the remote procedure’s
arguments. Multiple arguments are passed as
structures.

xdr_u_long() XDR filters for the remote procedure’s results.
Multiple results are passed as structures.

Only the UDP transport mechanism can use registerrpc(); thus, it is always safe
in conjunction with calls generated by callrpc().

Note: The UDP transport mechanism can only deal with arguments and results
less than eight KB bytes in length.

After registering the local procedure, the server program’s main procedure calls
svc_run(), the RPC library’s remote procedure dispatcher. This function calls the
remote procedures in response to RPC call messages. The dispatcher takes care
of decoding remote procedure arguments and encoding results, using the XDR
filters specified when the remote procedure was registered.

Note: Called remote procedures must have the results stored as static variables
or external to the called procedure, so that the value is not lost when the
procedure is exited.

Using Remote Procedure Calls 2–9

Higher Layers of RPC

Assigning Program Numbers

Program numbers are assigned in groups of 0x20000000 according to the
following table:

Program Number Assignment

 0x0 - 0x1fffffff Defined by Sun: Sun Microsystems administers this group of numbers, which
should be identical for all Sun customers. If a customer develops an application
that might be of general interest, that application should be given an assigned
number in the first range.

0x20000000 - 0x3fffffff Defined by user: This group is reserved for specific customer applications. This
range is intended primarily for debugging new programs.

0x40000000 - 0x5fffffff Transient: This group is reserved for applications that generate program
numbers dynamically.

0x60000000 - 0x7fffffff Reserved for future use; should not be used.

0x80000000 - 0x9fffffff Reserved for future use; should not be used.

0xa0000000 - 0xbfffffff Reserved for future use; should not be used.

0xc0000000 - 0xdfffffff Reserved for future use; should not be used.

0xe0000000 - 0xffffffff Reserved for future use; should not be used.

To register a protocol specification, or to obtain a complete list of registered
programs, send a request by network mail to rpc@sun.com, or write to:

RPC Administrator
Sun Microsystems
2550 Garcia Avenue
Mountain View, CA 94043

When registering a protocol specification, please include a compilable rpcgen
“.x” file describing your protocol. You are given a unique program number in
return. The RPC program numbers and protocol specifications of standard Sun
RPC services can be found in the include files in /usr/include/rpcsvc on most
UNIX machines. These services, however, constitute only a small subset of those
that have been registered.

2–10 RPC/XDR Programmer's Reference

Higher Layers of RPC

Passing Arbitrary Data Types

In the previous example, the RPC call passes a single unsigned long. RPC can
handle arbitrary data structures, regardless of byte orders or structure layout
conventions used by different machines. RPC does this by always converting the
data structures to a network standard called External Data Representation (XDR)
before sending them over the network.

The process of converting from a particular machine representation to XDR
format is called serializing and the reverse process is called deserializing. The
type field parameters of callrpc() and registerrpc() can be a built-in procedure
such as xdr_u_long() in the previous example, or a user supplied one.

Built-in Type Routines XDR has these built-in type routines:
xdr_int()
xdr_u_int()
xdr_enum()
xdr_long()
xdr_u_long()
xdr_bool()
xdr_short()
xdr_u_short()
xdr_wrapstring()
xdr_char()
xdr_u_char()
xdr_array()
xdr_bytes()
xdr_double()
xdr_float()
xdr_string()
xdr_union()
xdr_vector()

The routine xdr_string() exists, but cannot be used with callrpc() and
registerrpc(), which only pass two parameters to their XDR routines.
xdr_wrapstring, which has only two parameters, is syntactically correct, and it
calls xdr_string().

Example 1 The following is an example of a user-defined type routine, if you want to send
this structure:
struct simple
{
 int a;
 short b;
} simple;

you would call callrpc() by entering:
callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_simple, &simple ...);

Using Remote Procedure Calls 2–11

Higher Layers of RPC

Example 2 The xdr_simple() routine is written as follows:
#include <rpc.h>

xdr_simple(xdrsp, simplep)
 XDR *xdrsp;
 struct simple *simplep;
{
 if (!xdr_int(xdrsp, &simplep->a))
 return (0);
 if (!xdr_short(xdrsp, &simplep->b))
 return (0);
 return (1);
}

An XDR routine returns nonzero (true for C) if it completes successfully, and
zero otherwise. You will find a complete description of XDR in RFC 1014; only a
few implementation examples are given here.

Prefabricated Building Blocks

In addition to the built-in primitives, there are also the prefabricated building
blocks:
xdr_array()
xdr_bytes()
xdr_reference()
xdr_vector()
xdr_union()
xdr_pointer()
xdr_string()
xdr_opaque()

To send a variable array of integers, you might package them as a structure:
struct varintarr
{
 int *data;
 int arrlnth;
}
arr;

Then make an RPC call such as:
callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_varintarr, &arr...);

The xdr_varintarr() routine is defined like this:
xdr_varintarr(xdrsp, arrp)
 XDR *xdrsp;
 struct varintarr *arrp;
{
 return
 (xdr_array(xdrsp, &arrp->data, &arrp->arrlnth, MAXLEN, sizeof(int),
xdr_int));
}

2–12 RPC/XDR Programmer's Reference

Higher Layers of RPC

xdr_varintarr
Arguments

The xdr_varintarr() routine takes the following arguments:

xdr_array The XDR handle

&arrp->data A pointer to the array

&arrp->arrlnth A pointer to the size of the array

MAXLEN The maximum allowable array size

sizeof(int) The size of each array element

xdr_int An XDR routine for handling each array element

If the size of the array is known in advance, you can use xdr_vector(), which
serializes fixed-length.
int intarr[SIZE]; /* externally defined results */
xdr_intarr(xdrsp, intarr)
 XDR *xdrsp;
 int intarr[];
{
 int i;
 return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int), xdr_int));
}

XDR always converts quantities to 4-byte multiples when serializing. Thus, if
either of the previous examples involved characters instead of integers, each
character would occupy 32 bits. That is the reason for the XDR routine xdr_bytes,
which is like xdr_array except that it packs characters; xdr_bytes has four
arguments, similar to the first four arguments of xdr_array. For null-terminated
strings, there is also the xdr_string() routine, which is the same as xdr_bytes
without the length argument. On select, it gets the string length from strlen, and
on deserializing it creates a null-terminated string.

A Final Example This is a final example that calls the previously written xdr_simple() as well as
the built-in functions xdr_string() and xdr_reference (which chases pointers).
struct finalexample
{
 char *string;
 struct simple *simplep;
} finalexample;

xdr_finalexample(xdrsp, finalp)
 XDR *xdrsp;
 struct finalexample *finalp;
{
 if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
 return (0);
 if (!xdr_reference(xdrsp, &finalp->simplep,

 sizeof(struct simple), xdr_simple);
 return (0);
 return (1);
}

Note: You could call xdr_simple() here instead of xdr_reference().

Using Remote Procedure Calls 2–13

Lowest Layer of RPC

Lowest Layer of RPC
In the examples given in the previous section, RPC takes care of many details
automatically. This section shows how to change the defaults by using lower
layers of the RPC library. It is assumed that you are familiar with sockets, and
with the system/function calls for dealing with them.

There are several occasions when you may need to use lower layers of RPC:

■ You may need to use TCP, since the higher layer uses UDP, which restricts
RPC calls to 8K bytes of data. Using TCP permits calls to send long streams
of data.

■ You may want to allocate and free memory while serializing or deserializing
with XDR routines. There is no call at the higher level to let you free memory
explicitly. (See Memory Allocation with XDR additional information.)

■ You may need to perform authentication on either the client or the server
side, by supplying credentials or verifying them. See Authentication for
additional information.

More on the Server Side

This server for the nusers program does the same thing as the one using
registerrpc() shown earlier in this chapter, but is written using a lower layer of
the RPC package:
#include <stdio.h>
#include <rpc.h>
#include <utmp.h>
#include <rusers.h> /* not provided with TCPaccess RPC/XDR */

#define RUSERSPROG 10002
#define RUSERSVERS 2
#define RUSERPROC-NUM 1

main()
{

 SVCXPRT *transp;
 int nuser();
 transp = svcudp_create(RPC_ANYSOCK);
 if (transp == NULL)
 {
 fprintf(stderr, "can't create an RPC server\n");
 exit(1);
 }
 pmap_unset(RUSERSPROG, RUSERSVERS);
 if (!svc_register(transp, RUSERSPROG, RUSERSVERS, nuser, IPPROTO_UDP))
 {
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
 }
 svc_run(); /* Never returns */
 fprintf(stderr, "should never reach this point\n");
}

2–14 RPC/XDR Programmer's Reference

Lowest Layer of RPC

nuser(rqstp, transp)
 struct svc_req *rqstp;
 SVCXPRT *transp;

{

 unsigned long nusers;

 switch (rqstp->rq_proc)
 {
 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0))
 fprintf(stderr, "can't reply to RPC call\n");
 return;
 case RUSERSPROC_NUM:
 .
 . Code here to compute the number of users
 . and assign it to the variable nusers
 .
 if (!svc_sendreply(transp, xdr_u_long, &nusers))
 fprintf(stderr, "can't reply to RPC call\n");
 return;
 default:
 svcerr_noproc(transp);
 return;
 }
}

The Server Gets a Transport Handle

First, the server gets a transport handle, which is used for receiving and replying
to RPC messages. registerrpc() uses svcudp_create to get a UDP handle. If you
require a more reliable protocol, call svctcp_create instead. If the argument to
svcudp_create is RPC_ANYSOCK, the RPC library creates a socket on which to
receive and reply to RPC calls. Otherwise, svcudp_create expects its argument to
be a valid socket number. If you specify your own socket, it can be bound or
unbound. If it is bound to a port by the user, the port numbers of svcudp_create
and clnttcp_create (the low-level client routine) must match.

If the user specifies the RPC_ANYSOCK argument, the RPC library routines
open a socket. Otherwise, they expect the user to do so. The routines
svcudp_create and clntudp_create cause the RPC library routines to bind their
sockets, if they are not bound already.

A service may choose to register its port number with the local portmapper
service. This is done by specifying a non-zero protocol number in svc_register. A
client can discover the server’s port number by consulting the portmapper on
their server’s machine. This can be done automatically by specifying a zero port
number in clntudp_create or clnttcp_create.

Using Remote Procedure Calls 2–15

Lowest Layer of RPC

The Server Calls pmap_unset

After creating an SVCXPRT, the next step is to call pmap_unset so that if the
nusers server crashed earlier, any previous trace of it is erased before restarting.
More precisely, pmap_unset erases the entry for RUSERSPROG from the
portmapper’s tables.

The Program Number is Associated with the nuser Procedure

Finally, the program number for nusers is associated with the procedure nuser.
The final argument to svc_register is normally the protocol in use, which, in this
case, is IPPROTO_UDP. Unlike registerrpc(), there are no XDR routines involved
in the registration process. Also, registration is done on the program level, rather
than the procedure level.

The user routine nuser must call and dispatch the appropriate XDR routines
based on the procedure number. These tasks, which registerrpc() handles
automatically, are handled by nuser:

■ Procedure NULLPROC (currently zero) returns with no results. This can be
used as a simple test to detect if a remote program is running.

■ There is a check for invalid procedure numbers. If one is detected,
svcerr_noproc is called to handle the error.

The user service routine serializes the results and returns them to the RPC caller
via svc_sendreply. Its first argument is the SVCXPRT handle, the second is the
XDR routine, and the third is a pointer to the data to be returned.

Handling an RPC Program that Receives Data

Not illustrated in the previous example is how a server handles an RPC program
that receives data. You can add a procedure RUSERSPROC_BOOL, which has an
argument nusers, and returns TRUE or FALSE depending on whether there are
nusers logged on. This is an example of how it looks:
case RUSERSPROC_BOOL:
{
 int bool;
 unsigned nuserquery;

 if (!svc_getargs(transp, xdr_u_int, &nuserquery)
 {
 svcerr_decode(transp);
 return;
 }

2–16 RPC/XDR Programmer's Reference

Lowest Layer of RPC

.

. Code to set nusers = number of users

.
if (nuserquery == nusers)
 bool = TRUE;
else
 bool = FALSE;
if (!svc_sendreply(transp, xdr_bool, &bool))
 {
 fprintf(stderr, "can’t reply to RPC call\n");
 return (1);
 }
return;
}

The relevant routine is svc_getargs, which takes, as arguments, an SVCXPRT
handle, the XDR routine, and a pointer to where the input is to be placed.

Memory Allocation with XDR

XDR routines not only process input and output, they also perform memory
allocation. This is why the second argument of xdr_array is a pointer to an array,
rather than the array itself. If it is NULL, then xdr_array allocates space for the
array and returns a pointer to it, putting the size of the array in the third
argument. As an example, consider this XDR routine xdr_chararr1, which deals
with a fixed array of bytes with length SIZE.
xdr_chararr1(xdrsp, chararr)
 XDR *xdrsp;
 char chararr[];
{
 char *p;
 int len;

 p = chararr;
 len = SIZE;
 return (xdr_bytes(xdrsp, &p, &len, SIZE));
}

If space has already been allocated in chararr, it can be called from a server like
this:
char chararr[SIZE];

svc_getargs(transp, xdr_chararr1, chararr);

If you want XDR to do the allocation, you would have to rewrite the routine like
this:
xdr_chararr2(xdrsp, chararrp)
 XDR *xdrsp;
 char **chararrp;
{
 int len;

 len = SIZE;
 return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));
}

Using Remote Procedure Calls 2–17

Lowest Layer of RPC

Then the RPC call might look like this:
char *arrptr;

arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);

/* Use the result here */

svc_freeargs(transp, xdr_chararr2, &arrptr);

After being used, the character array can be freed with svc_freeargs. svc_freeargs
does not attempt to free any memory if the variable indicating it is NULL.

Note: In the routine xdr_finalexample, given earlier, if finalp->string was NULL,
then it would not be freed. The same is true for finalp->simplep.

To summarize, each XDR routine is responsible for serializing, deserializing, and
freeing memory. When an XDR routine is called from callrpc(), the serializer part
is used. When called from svc_getargs, the deserializer is used. And when called
from svc_freeargs, the memory deallocator is used.

When building simple examples like those in this section, a user does not have to
worry about the three modes. See RFC 1014 for examples of more sophisticated
XDR routines that determine which of the three modes they are in and adjust
their behavior accordingly.

The Calling Side

When you use callrpc(), you have no control over the RPC delivery mechanism
or the socket used to transport the data. To illustrate the layer of RPC that lets
you adjust these parameters, consider this code to call the nusers service. This
program, as shown, can be run on MVS.
#include <stdio.h>
#include <rpc.h>
#include <utmp.h>
#include <netdb.h>
#define RUSERSPROG 10002
#define RUSERSVERS 2
#define RUSERSPROC-NUM 1
main(argc, argv)
 int argc; char **argv;
{
 struct hostent *hp;
 struct timeval pertry_timeout, total_timeout;
 struct sockaddr_in server_addr;
 int sock = RPC_ANYSOCK;
 register CLIENT *client;
 enum clnt_stat clnt_stat;
 unsigned long nusers;
 if (argc != 2)
 {
 fprintf(stderr, "usage: nusers hostname\n");
 exit(-1);

2–18 RPC/XDR Programmer's Reference

Lowest Layer of RPC

 }
 if ((hp = gethostbyname(argv[1])) == NULL)
 {
 fprintf(stderr, "can't get addr for %s\n",argv[1]);
 exit(-1);
 }
 pertry_timeout.tv_sec = 3;
 pertry_timeout.tv_usec = 0;
 bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr, hp->h_length);
 server_addr.sin_family = AF_INET;
 server_addr.sin_port = 0;
 if ((client = clntudp_create(&server_addr, RUSERSPROG,
 RUSERSVERS, pertry_timeout, &sock)) == NULL)
 {
 clnt_pcreateerror("clntudp_create");
 exit(-1);
 }
 total_timeout.tv_sec = 20;
 total_timeout.tv_usec = 0;
 clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void,
 0, xdr_u_long, (char*)&nusers, total_timeout);
 if (clnt_stat != RPC_SUCCESS)
 {
 clnt_perror(client, "rpc");
 exit(-1);
 }
 clnt_destroy(client);
 close(sock);
 exit(0);
}

The CLIENT Pointer

The low-level version of callrpc() is clnt_call(), which takes a CLIENT pointer
rather than a host name. It takes the following arguments:

client A CLIENT pointer

RUSRSPROC_NUM The procedure number

xdr_void The XDR routine for serializing the argument

0 A pointer to the argument

xdr_u_long The XDR routine for deserializing the return
value

(char*)&nusers A pointer to where the return value is placed

total_timeout The total time, in seconds, to wait for a reply

The CLIENT pointer is encoded with the transport mechanism. The callrpc()
routine uses UDP, thus it calls clntudp_create to get a CLIENT pointer. To get
Transmission Control Protocol (TCP), you use clnttcp_create.

Using Remote Procedure Calls 2–19

Lowest Layer of RPC

The clntudp_create()
Arguments

The clntudp_create() routine takes five arguments; in this example, they are:

&server_addr The server address

RUSERSPROG The program number

RUSERSVERS The version number

pertry_timeout A timeout value (between tries)

&sock A pointer to a socket

Thus, the number of tries is the clnt_call() timeout divided by the
clntudp_create() timeout.

The clnt_destroy call always deallocates the space associated with the CLIENT
handle. It closes the socket associated with the CLIENT handle, however, only if
the RPC library opened it.

If the socket was opened by the user, it stays open. This makes it possible, in
cases where multiple client handles are using the same socket, to destroy one
handle without closing the socket that other handles are using.

To make a stream connection, the call to clntudp_create is replaced with a call to
clnttcp_create.
clnttcp_create(&server_addr, prognum, versnum, &sock, inputsize, outputsize);

There is no timeout argument; instead, the receive and send buffer sizes must be
specified. When the clnttcp_create call is made, a connection is established. All
RPC calls using that CLIENT handle would use this connection. The server side
of an RPC call using TCP has svcudp_create replaced by svctcp_create.
transp = svctcp_create(RPC_ANYSOCK, 0, 0);

The last two arguments to svctcp_create are send and receive sizes, respectively.
If 0 is specified for either of these, the system chooses a reasonable default.

2–20 RPC/XDR Programmer's Reference

Useful RPC Features

Useful RPC Features
This section discusses some other aspects of RPC that you may find useful.

Select on the Server Side

If a process is handling RPC requests while performing some other activity, and
the other activity involves periodically updating a data structure, the process can
set an alarm signal before calling svc_run(). But if the other activity involves
waiting on a file descriptor, the svc_run() call will not work.

The code for svc_run() should be like the following:
void
svc_run()
{
 fd_set readfds;
 int dtbsz = getdtablesize();

/* Note: getdtablesize is not provided with RPC/XDR */
 for (;;)
 {
 readfds = svc_fds;
 switch (select(dtbsz, &readfds, NULL,NULL,NULL))
 {
 case -1:
 if (errno == EINTR)
 continue;
 perror("select");
 return;
 case 0:
 break;
 default:
 svc_getreqset(&readfds);
 }
 }
}

You can bypass svc_run() and call svc_getreqset yourself. All you need to know
are the file descriptors of the sockets or sockets associated with the programs
you are waiting on. Thus, you can have your own select that waits on both the
RPC socket and your own descriptors. svc_fds is a bit mask of all the file
descriptors that RPC is using for services. It can change every time that any RPC
library routine is called, because descriptors are constantly being opened and
closed (e.g., for connections).

For users who prefer to use generic ECBs for synchronization, mvs_svc_run()
may be used. In this case, the RPC server acts the same as if called using
svc_run(), but control returns to the caller of mvs_svc_run() when an ECB is
posted.

Using Remote Procedure Calls 2–21

Useful RPC Features

Broadcast RPC

The portmapper is a daemon that converts RPC program numbers into DARPA
protocol port numbers. For more information about the portmapper, read RFC
1057.

Note: Broadcast RPC is not available in the TCPaccess RPC/XDR.

You cannot broadcast RPC without the portmapper. Here are the main
differences between broadcast RPC and normal RPC calls:

■ Normal RPC expects one answer, whereas broadcast RPC expects many
answers (one or more answer from each responding machine).

■ Broadcast RPC can only be supported by packet-oriented (connectionless)
transport protocols like UDP/IP.

■ The implementation of broadcast RPC treats all unsuccessful responses as
garbage by filtering them out. Thus, if there is a version mismatch between
the broadcaster and a remote service, the user of broadcast RPC never
knows.

■ All broadcast messages are sent to the portmap port. Thus, only services that
register themselves with their portmapper are accessible via the broadcast
RPC mechanism.

■ Broadcast requests are limited in size to the Maximum Transfer Unit (MTU)
of the local network. For Ethernet, the MTU is 1500 bytes.

Broadcast RPC Synopsis
#include <pmapclnt.h>
 .
 .
 .
enum clnt_stat clnt_stat;
 .
 .
 .
clnt_stat = clnt_broadcast(prognum, versnum, procnum,
 inproc, in, outproc, out, eachresult)
 u_long prognum; /* program number */
 u_long versnum; /* version number */
 u_long procnum; /* procedure number */
 xdrproc_t inproc; /* xdr routine for args */
 caddr_t in; /* pointer to args */
 xdrproc_t outproc; /* xdr routine for results */
 caddr_t out; /* pointer to results */

 bool_t (*eachresult)(); /* call with each result */

2–22 RPC/XDR Programmer's Reference

Useful RPC Features

The procedure is called each time a valid result is obtained. It returns a boolean
that indicates whether the user wants more responses.
bool_t done;
 .
 .
 .
done = eachresult(resultsp, raddr)
 caddr_t resultsp;
 struct sockaddr_in *raddr; /* Addr of responding machine */

If done is TRUE, then broadcasting stops and clnt_broadcast returns
successfully. Otherwise, the routine waits for another response. The request is
rebroadcast after a few seconds of waiting. If no responses come back, the
routine returns with RPC_TIMEDOUT.

Batching

In the RPC architecture, clients send a call message and wait for servers to reply
that the call succeeded. This implies that clients do not compute while servers
are processing a call. This is inefficient if the client does not want or need an
acknowledgment for every message sent. It is possible for clients to continue
computing while waiting for a response using RPC batch facilities.

Server Batching

RPC messages can be placed in a pipeline of calls to a desired server; this is called
batching. Batching assumes that:

■ Each RPC call in the pipeline requires no response from the server, and the
server does not send a response message; and

■ The pipeline of calls is transported on a reliable byte stream transport such
as TCP/IP.

Since the server does not respond to every call, the client can generate new calls
in parallel with the server executing previous calls. Furthermore, the TCP/IP
implementation can buffer up many call messages, and send them to the server
in one write system call. This overlapped execution greatly decreases the
interprocess communication overhead of the client and server processes, as well
as the total elapsed time of a series of calls.

Since the batched calls are buffered, the client should eventually do a
nonbatched call to flush the pipeline.

Here is an example of batching. Assume a string rendering service (like a
window system) has two similar calls: one renders a string and returns void
results, while the other renders a string and remains silent.

Using Remote Procedure Calls 2–23

Useful RPC Features

The service (using the TCP/IP transport) may look like this:
#include <stdio.h>
#include <rpc.h>

void windowdispatch();
main()
{
 SVCXPRT *transp;
 transp = svctcp_create(RPC_ANYSOCK, 0, 0);
 if (transp == NULL)
 {
 fprintf(stderr, "can't create an RPC server\n");
 exit(1);
 }
 pmap_unset(WINDOWPROG, WINDOWVERS);
 if (!svc_register(transp, WINDOWPROG, WINDOWVERS,
 windowdispatch, IPPROTO_))
 {
 fprintf(stderr, "can't register WINDOW service\n");
 exit(1);
 }
 svc_run(); /* Never returns */
 fprintf(stderr, "should never reach this point\n");
}
void windowdispatch(rqstp, transp)
 struct svc_req *rqstp;
 SVCXPRT *transp;

{
 char *s = NULL;
 switch (rqstp->rq_proc)
 {
 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0))
 fprintf(stderr, "can't reply to RPC call\n");
 return;
 case RENDERSTRING:
 if (!svc_getargs(transp, xdr_wrapstring, &s))
 {
 fprintf(stderr, "can't decode arguments\n") ;

 /* Tell caller about error */
 svcerr_decode(transp);
 break;
 }
 .
 . Code here to render the strings
 .
 if (!svc_sendreply(transp, xdr_void, NULL))
 fprintf(stderr, "can't reply to RPC call\n");
 break;
 case RENDERSTRING_BATCHED:
 if (!svc_getargs(transp, xdr_wrapstring, &s))
 {
 fprintf(stderr, "can't decode arguments\n") ;

 /* We are silent in the face of protocol errors */

2–24 RPC/XDR Programmer's Reference

Useful RPC Features

 break;
 }
 .
 . Code here to render strings, but send no reply!
 .
 break;
 default:
 svcerr_noproc(transp);
 return; }

 /* Now free string allocated while decoding arguments */

 svc_freeargs(transp, xdr_wrapstring, &s);
 }
}

The service could have one procedure that takes the string and a boolean to
indicate whether the procedure should respond.

Client Batching

For a client to take advantage of batching, the client must perform RPC calls on a
TCP/IP-based transport and the actual calls must have these attributes:

■ The resulting XDR routine must be zero (NULL).

■ The RPC call’s timeout must be zero.

Here is an example of a client that uses batching to render multiple strings; the
batching is flushed when the client gets a null string (EOF):
#include <stdio.h>
#include <rpc.h>
#include <socket.h>
#include <time.h>
#include <netdb.h>

main(argc, argv)
 int argc;
 char **argv;
{
 struct hostent *hp;
 struct timeval pertry_timeout, total_timeout;
 struct sockaddr_in server_addr;
 int sock = RPC_ANYSOCK;
 register CLIENT *client;
 enum clnt_stat clnt_stat;
 char buf[1000], *s = buf;

 if ((client = clnttcp_create(&server_addr, WINDOWPROG,
 WINDOWVERS, &sock, 0, 0)) == NULL)
 {
 error("clnttcp_create");
 exit(-1);
 }
 total_timeout.tv_sec = 0;
 total_timeout.tv_usec = 0;
 while (scanf("%s", s) != EOF)
 {
 clnt_stat = clnt_call(client, RENDERSTRING_BATCHED,

Using Remote Procedure Calls 2–25

Useful RPC Features

 xdr_wrapstring, &s, NULL, NULL, total_timeout);
 if (clnt_stat != RPC_SUCCESS)
 {
 clnt_perror(client, "batched rpc");
 exit(-1);
 }
 }

 /* Now flush the pipeline */

 total_timeout.tv_sec = 20;
 clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL,
 xdr_void, NULL, total_timeout);
 if (clnt_stat != RPC_SUCCESS)
 {
 clnt_perror(client, "rpc");
 exit(-1);
 }
 clnt_destroy(client);
 exit(0);
}

Since the server sends no message, the clients cannot be notified of any of the
failures that may occur. Therefore, clients are on their own when it comes to
handling errors.

The previous example was completed to render all of the (2000) lines in the
UNIX file /etc/termcap. The rendering service did nothing but throw the lines
away. The example was run in the following configurations, with the indicated
results:

Configuration Result

Machine to itself, regular RPC 50 seconds

Machine to itself, batched RPC 16 seconds

Machine to machine, regular RPC 52 seconds

Machine to machine, batched RPC 10 seconds

Running fscanf on the UNIX file /etc/termcap only requires six seconds. These
timings show the advantage of protocols that allow for overlapped execution,
though these protocols are often hard to design.

2–26 RPC/XDR Programmer's Reference

Useful RPC Features

Authentication

In the examples presented so far, the caller never identified itself to the server,
and the server never required an ID from the caller. Clearly, some network
services, such as a network file system, require stronger security than what has
been presented so far.

In reality, every RPC call is authenticated by the RPC package on the server, and
similarly, the RPC client package generates and sends authentication parameters.
Just as different transports (TCP/IP or UDP/IP) can be used when creating RPC
clients and servers, different forms of authentication can be associated with RPC
clients; the default authentication type is none.

The authentication subsystem of the RPC package is open ended. That is,
numerous types of authentication are easy to support.

UNIX Authentication

The TCPaccess RPC/XDR supports UNIX authentication.

The Client Side When a caller creates a new RPC client handle by using:
clnt = clntudp_create(address, prognum, versnum, wait, sockp)

the appropriate transport instance defaults the associate authentication handle
to:
clnt->serverl_auth = authnone_create()

The RPC client can choose to use UNIX style authentication by setting the field
clnt->serverl_auth after creating the RPC client handle using:
clnt->serverl_auth = authunix_create_default()

This causes each RPC call associated with clnt to carry an authentication
credentials structure:
.
. UNIX style credentials
.
struct authunix_parms
{
 u_long aup_time; /* credentials creation time */
 char *aup_machname; /* host name where client is */
 int aup_uid; /* client's UNIX effective uid */
 int aup_gid; /* client's current group id */
 u_int aup_len; /* element length of aup_gids */
 int *aup_gids; /* array of groups user is in */
};

Using Remote Procedure Calls 2–27

Useful RPC Features

These fields are set by authunix_create_default by using the appropriate system
calls. Since the RPC user created this new style of authentication, the user is
responsible for destroying it with
auth_destroy(clnt->serverl_auth);

This should be done in all cases to conserve memory.

The Server Side Service implementers have a harder time dealing with authentication issues
since the RPC package passes the service dispatch routine a request that has an
arbitrary authentication style associated with it. Consider the fields of a request
handle passed to a service dispatch routine using this code:
.
. An RPC Service request
.
struct svc_req
{
 u_long rq_prog; /* service program number */
 u_long rq_vers; /* service protocol vers num */
 u_long rq_proc; /* desired procedure number */
 struct opaque_auth rq_cred; /* raw credentials from wire */
 caddr_t rq_clntcred; /* credentials (read only) */
};

The rq_cred is mostly opaque, except for one field of interest: the style or flavor
of authentication credentials, as illustrated here:
.
. Authentication info, mostly opaque to the programmer
.
struct opaque_auth
{
 enum_t oa_flavor; /* style of credentials */
 caddr_t oa_base; /* address of more auth stuff */
 u_int oa_length; /* not to exceed MAX_AUTH_BYTES */
};

The RPC package makes these guarantees to the service dispatch routine:

■ The request’s rq_cred is well formed. Thus, the service implementer may
inspect the request’s rq_cred.oa_flavor to determine which style of
authentication the caller used. The service implementer may also wish to
inspect the other fields of rq_cred if the style is not one of the styles
supported by the RPC package.

■ The request’s rq_clntcred field is either NULL or points to a well formed
structure that corresponds to a supported style of authentication credentials.
Remember that only UNIX style is currently supported, so (currently)
rq_clntcred could be cast to a pointer to an authunix_parms structure. If
rq_clntcred is NULL, the service implementer may wish to inspect the other
(opaque) fields of rq_cred, in case the service knows about a new type of
authentication that the RPC package does not know about.

2–28 RPC/XDR Programmer's Reference

Useful RPC Features

This remote users service example can be extended so that it computes results for
all users except UID 16.
nuser(rqstp, transp)
 struct svc_req *rqstp;
 SVCXPRT *transp;
{
 struct authunix_parms *unix_cred;
 int uid;
 unsigned long nusers; /* we don't care about authentication
 for null proc */
 if (rqstp->rq_proc == NULLPROC)
 {
 if (!svc_sendreply(transp, xdr_void, 0))
 {
 fprintf(stderr, "can't reply to RPC call\n");
 return (1);
 }
 return;
 }
/* now get the uid */

 switch (rqstp->rq_cred.oa_flavor)
 {
 case AUTH_UNIX:
 unix_cred = (struct authunix_parms *)rqstp->rq_clntcred;
 uid = unix_cred->aup_uid;
 break;
 case AUTH_NULL:
 default:
 svcerr_weakauth(transp);
 return;
 }
 switch (rqstp->rq_proc)
 {
 case RUSERSPROC_NUM: /* make sure caller is allowed
 to call this proc */
 if (uid == 16)
 {
 svcerr_systemerr(transp);
 return;
 }
 .
 . Code here to compute the number of users
 . and assign it to the variable nusers
 .
 if (!svc_sendreply(transp, xdr_u_long, &nusers))
 {
 fprintf(stderr, "can't reply to RPC call\n");
 return (1);
 }
 return;
 default:
 svcerr_noproc(transp);
 return;
 }
}

Using Remote Procedure Calls 2–29

Useful RPC Features

A few things should be noted:

■ It is customary not to check the authentication parameters associated with
the NULLPROC (procedure number zero).

■ If the authentication parameter’s type is not suitable for your service, you
should call svcerr_weakauth.

■ The service protocol itself should return status for access denied; in the case
of the example, the protocol does not have such a status, so the service
primitive svcerr_systemerr is called instead.

■ The last point underscores the relation between the RPC authentication
package and the services; RPC deals only with authentication and not with
individual services’ access control. The services themselves must implement
their own access control policies and reflect these policies as return statuses
in their protocols.

DES Authentication

UNIX authentication is quite easy to defeat. Instead of using
authunix_create_default, you can call authunix_create and then modify the RPC
authentication handle it returns by filling in whatever user ID and host name
you want the server to think it has. DES authentication is thus recommended if
you want more security than UNIX authentication offers.

Note: The TCPaccess RPC/XDR does not currently support DES authentication.
Users may write their own DES authorization handler.

The details of the DES authentication protocol are complicated and are not
explained here. See RFC 1057 for the details.

For DES authentication to work, the keyserv(8c) daemon must be running on
both the server and client machines. The users on these machines need public
keys assigned by the network administrator in the publickey(5) database. They
also need to have decrypted their secret keys using their login password. This
happens automatically when you log in using login(1), or you can do it manually
using keylogin(1).

2–30 RPC/XDR Programmer's Reference

Useful RPC Features

Client Side If a client wishes to use DES authentication, it must set its authentication handle
appropriately. Here is an example:
cl->cl-auth=
 authdes_create(servername, 60, &server_addr, NULL);

The first argument is the network name or netname of the owner of the server
process. Typically, server processes are root processes and their netname can be
derived using this call:
char servername[MAXNETNAMELEN];

host2netname(servername, rhostname, NULL);

Here, rhostname is the host name of the machine where the server process is
running. host2netname fills in servername to contain this root process’s netname.
If the server process was run by a regular user, you could use the call
user2netname instead. Here is an example for a server process with the same
user ID as the client:
char servername[MAXNETNAMELEN];

user2netname(servername, getuid(), NULL);

The last argument to both user2netname and host2netname is the name of the
naming domain where the server is located. The NULL used here means “use
the local domain name”.
authdes_create Arguments

The authdes_create routine takes the following arguments:

servername The name of the server

60 The lifetime of the credential
Here it is set to sixty seconds. This means that the credential
expires 60 seconds from now. If some mischievous user
tries to reuse the credential, the server RPC subsystem
recognizes that it has expired and will not grant any
requests. If the same user tries to reuse the credential within
the sixty-second lifetime, the user is still rejected because
the server RPC subsystem remembers which credentials it
has already seen in the near past, and does not grant
requests to duplicates.

&server_addr The address of the host to which it synchronizes / For DES
authentication to work, the server and client must agree on
the time. Here the address of the server itself is passed, so
the client and server are both using the same time: the
server’s time. The argument can be NULL, which means
“don’t bother synchronizing”. You should only do this if
you are sure the client and server are already synchronized.

Using Remote Procedure Calls 2–31

Useful RPC Features

NULL The address of a DES encryption key to use for encrypting
time stamps and data / If this argument is NULL, as it is in
this example, a random key is chosen. The client may find
out the encryption key being used by consulting the ah_key
field of the authentication handle.

Server Side The server side is a lot simpler than the client side. Here is the previous example
rewritten to use AUTH_DES instead of AUTH_UNIX:
#include <time.h>
#include <authdes.h>
.
.
.
nuser(rqstp, transp)
 struct svc_req *rqstp;

 SVCXPRT *transp;
{
 struct authdes_cred *des_cred;
 int uid;
 int gid;
 int gidlen;
 int gidlist[10];[
/* we don't care about authentication for null proc */
 if (rqstp->rq_proc == NULLPROC)
 {
 .
 . same as before
 .
 }
/* now get the uid */
 switch (rqstp->rq_cred.oa_flavor)
 {
 case AUTH_DES:
 des_cred =
 (struct authdes_cred *) rqstp->rq_clntcred;
 if (! netname2user(des_cred->adc_fullname.name, &uid,
 &gid, &gidlen, gidlist))
 {
 fprintf(stderr, "unknown user: %s”, des_cred->adc_fullname.name);
 svcerr_systemerr(transp);
 return;
 }
 break;
 case AUTH_NULL:
 default:
 svcerr_weakauth(transp);
 return;
 }
 .
 . The rest is the same as before
 .
}

Notice the use of the routine netname2user, the inverse of user2netname: it takes
a network ID and converts to a UNIX ID. netname2user also supplies the group
IDs that are not used in this example, but which may be useful to other UNIX
programs.

2–32 RPC/XDR Programmer's Reference

Useful RPC Features

Using Inetd

Note: inetd is not available in the TCPaccess RPC/XDR.

An RPC server can be started from inetd.

When starting an RPC server from inetd, the only difference from the usual code
is that the service creation routine should be called in this form, since inet passes
a socket as file descriptor 0.
transp = svcudp_create(0); /* For UDP */
transp = svctcp_create(0,0,0); /* For listener tcp sockets */
transp = svcfd_create(0,0,0); /* For connected tcp sockets */

Also, svc_register should be called with the final flag as 0, since the program
would already be registered by inetd.
svc_register(transp, PROGNUM, VERSNUM, service, 0);

Remember, if you want to exit from the server process and return control to inet,
you need to explicitly exit, since svc_run() never returns.

The format of entries in /etc/inetd.conf for RPC services can be either one of
these:
p_name/version dgram rpc/udp wait/nowait user server args p_name/version stream
rpc/tcp wait/nowait user server args

p_name The symbolic name of the program as it appears in rpc(5).

server The program implementing the server.

version The version number of the service.

If the same program handles multiple versions, then the version number can be a
range, as in this example:
rstatd/1-2 dgram rpc/udp wait root /usr/etc/rpc.rstatd

Using Remote Procedure Calls 2–33

Programming Examples

Programming Examples
This section presents more examples of remote procedure calls.

Versions

By convention, the first version number of program PROG is PROGVERS_ORIG;
the most recent version is PROGVERS. For a new version of the user program
named RUSERSVERS_SHORT that returns an unsigned short rather than a long,
a server that wants to support both versions would do a double register.
if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG, nuser,
 IPPROTO_tcp))
{
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
}
if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT, user,
 IPPROTO_tcp))
{
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
}

Both versions can be handled by the same C procedure, as this example
illustrates:
nuser(rqstp, transp)
 struct svc_req *rqstp;
 SVCXPRT *transp;
{
 unsigned long nusers;
 unsigned short nusers2;

 switch (rqstp->rq_proc)
 {
 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0))
 {
 fprintf(stderr, "can't reply to RPC call\n");
 return (1);
 }
 return;
 case RUSERSPROC_NUM:
 .
 . Code here to compute the number of users
 . and assign it to the variable nusers
 .
 nusers2 = nusers;
 switch (rqstp->rq_vers)
 {
 case RUSERSVERS_ORIG:
 if (!svc_sendreply(transp, xdr_u_long,
 &nusers))
 {
 fprintf(stderr,"can't reply to RPC call\n");
 }
 break;
 case RUSERSVERS_SHORT:
 if (!svc_sendreply(transp, xdr_u_short,
 &nusers2))

2–34 RPC/XDR Programmer's Reference

Programming Examples

 {
 fprintf(stderr,"can't reply to RPC call\n");
 }
 break;
 }
 default:
 svcerr_noproc(transp);
 return;
 }
}

TCP

Here is an example that is essentially rcp, a UNIX remote file copy program that
copies files between machines. The initiator of the RPC snd call takes its
standard input and sends it to the server rcv, which prints it on standard output.
The RPC call uses TCP. This also illustrates an XDR procedure that behaves
differently on serialization than on deserialization.
/* The xdr routine: on decode, read from wire, write onto fp
 * on encode, read from fp, write onto wire */

#include <stdio.h>
#include <rpc.h>

xdr_rcp(xdrs, fp)
 XDR *xdrs; FILE *fp;
{
 unsigned long size;
 char buf[BUFSIZ], *p;

 if (xdrs->x_op == XDR_FREE)

 /* nothing to free */

 return 1;
 while (1)
 {
 if (xdrs->x_op == XDR_ENCODE)
 {
 if ((size = fread(buf, sizeof(char), BUFSIZ, fp)) == 0
 && ferror(fp))
 {
 fprintf(stderr, "can't fread\n");
 return (1);
 }
 }
 p = buf;
 if (!xdr_bytes(xdrs, &p, &size, BUFSIZ))
 return 0;
 if (size == 0)
 return 1;
 if (xdrs->x_op == XDR_DECODE)
 {
 if (fwrite(buf, sizeof(char), size, fp) != size)
 {
 fprintf(stderr, "can't fwrite\n");
 return (1);
 }
 }
 }
}

Using Remote Procedure Calls 2–35

Programming Examples

/* The sender routines */
#include <stdio.h>
#include <netdb.h>
#include <rpc.h>
#include <socket.h>
#include <time.h>
main(argc, argv)
 int argc;
 char **argv;
{
 int xdr_rcp();
 int err;

 if (argc < 2)
 {
 fprintf(stderr, "usage: %s servername\n", argv[0]);
 exit(-1);
 }
 if ((err = callrpctcp(argv[1], RCPPROG, RCPPROC,
 RCPVERS, xdr_rcp, stdin, xdr_void, 0) != 0))
 {
 clnt_perrno(err);
 fprintf(stderr, "can't make RPC call\n");
 exit(1);
 }
 exit(0);
}

callrpctcp(host, prognum, procnum, versnum, inproc,
 in, outproc, out)
 char *host, *in, *out;
 xdrproc_t inproc, outproc;
{
 struct sockaddr_in server_addr;
 int sockets, = RPC_ANYSOCK;
 enum clnt_stat clnt_stat;
 struct hostent *hp;
 register CLIENT *client;
 struct timeval total_timeout;

 if ((hp = gethostbyname(host)) == NULL)
 {
 fprintf(stderr, "can't get addr for '%s'\n", host);
 return (-1);
 }
 bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,
 hp->h_length);
 server_addr.sin_family = AF_INET;
 server_addr.sin_port = 0;
 if ((client = clnttcp_create(&server_addr, prognum,
 versnum, &sockets,, BUFSIZ, BUFSIZ)) == NULL)
 {
 perror("rpctcp_create");
 return (-1);
 }
 total_timeout.tv_sec = 20;
 total_timeout.tv_usec = 0;
 clnt_stat = clnt_call(client, procnum, inproc, in, outproc,
 out, total_timeout);
 clnt_destroy(client);
 return (int)clnt_stat;
}

/* The receiving routines */

2–36 RPC/XDR Programmer's Reference

Programming Examples

#include <stdio.h>
#include <rpc.h>

main()
{
 register SVCXPRT *transp;
 int rcp_service(), xdr_rcp();
 if ((transp = svctcp_create(RPC_ANYSOCK, BUFSIZ, BUFSIZ)) ==
 NULL)
 {
 fprintf("svctcp_create: error\n");
 exit(1);
 }
 pmap_unset(RCPPROG, RCPVERS);
 if (!svc_register(transp, RCPPROG, RCPVERS, rcp_service, IPPROTO_tcp))
 {
 fprintf(stderr, "svc_register: error\n");
 exit(1);
 }
 svc_run(); /* never returns */
 fprintf(stderr, "svc_run should never return\n");
}

rcp_service(rqstp, transp)
 register struct svc_req *rqstp;
 register SVCXPRT *transp;
{
 switch (rqstp->rq_proc)
 {
 case NULLPROC:
 if (svc_sendreply(transp, xdr_void, 0) == 0)
 {
 fprintf(stderr, "err: rcp_service");
 return (1);
 }
 return;
 case RCPPROC_FP:
 if (!svc_getargs(transp, xdr_rcp, stdout))
 {
 svcerr_decode(transp);
 return;
 }
 if (!svc_sendreply(transp, xdr_void, 0))
 {
 fprintf(stderr, "can't reply\n");
 return;
 }
 return (0);
 default:
 svcerr_noproc(transp);
 return;
 }
}

Using Remote Procedure Calls 2–37

Programming Examples

Callback Procedures

Occasionally, it is useful to have a server become a client and make an RPC call
back to the process that is its client. An example is remote debugging, where the
client is a window system program and the server is a debugger running on the
remote machine. Most of the time the user clicks a mouse button at the
debugging window, which converts this to a debugger command, and then
makes an RPC call to the server (where the debugger is actually running), telling
it to execute that command. However, when the debugger hits a breakpoint, the
roles are reversed, and the debugger wants to make an RPC call to the window
program, so that it can inform the user that a breakpoint has been reached.

To do an RPC callback, you need a program number on which to make the RPC
call. Since this is a dynamically generated program number, it should be in the
transient range, 0x40000000 - 0x5fffffff. The routine gettransient returns a valid
program number in the transient range, and registers it with the portmapper. It
only talks to the portmapper running on the same machine as the gettransient
routine itself. The call to pmap_set is a test and set operation, because it
indivisibly tests whether a program number has already been registered, and if it
has not, then reserves it. On return, the sockp argument points to a socket, that
can be used as the argument to an svcudp_create() or svctcp_create() call.
#include <stdio.h>
#include <rpc.h>
#include <sockets.h>

gettransient(proto, vers, sockp)
 int proto, vers, *sockp;
{
 static int prognum = 0x40000000;
 int s, len, socktype;
 struct sockaddr_in addr;
 switch(proto)
 {
 case IPPROTO_UDP:
 socktype = SOCK_DGRAM;
 break;
 case IPPROTO_TCP:
 socktype = SOCK_STREAM;
 break;
 default:
 fprintf(stderr, "unknown protocol type\n");
 return 0;
 }
if (*sockp == RPC_ANYSOCK)
 {
 if ((s = sockets,(AF_INET, socktype, 0)) < 0)
 {
 perror("sockets,");
 return (0);
 }
 *sockp = s;
 }
else
 s = *sockp;
 addr.sin_addr.s_addr = 0;
 addr.sin_family = AF_INET;
 addr.sin_port = 0;
 len = sizeof(addr);

2–38 RPC/XDR Programmer's Reference

Programming Examples

 /* may be already bound, so don't check for error */
 bind(s, &addr, len);
 if (getsockname(s, &addr, &len)< 0)
 {
 perror("getsockname");
 return (0);
 }
 while (!pmap_set(prognum++, vers, proto, ntohs(addr.sin_port))) continue;
 return (prognum-1);
}

Note: The call to ntohs is necessary to ensure that the port number in
addr.sin_port, which is in network byte order, is passed in host byte order (as
pmap_set expects).

The following client and server programs illustrate how to use the gettransient
routine. The client makes an RPC call to the server, passing it a transient
program number. Then the client waits around to receive a callback from the
server at that program number. The server registers the program
EXAMPLEPROG, so that it can receive the RPC call informing it of the callback
program number. Then at some random time (on receiving an ALRM signal in
this example), it sends a callback RPC call, using the program number it received
earlier.

Using Remote Procedure Calls 2–39

Programming Examples

Client
The client program:
/* client */

#include <stdio.h>
#include <rpc.h>

int callback,();
char hostname[256];
main()

{
 int x, ans, s;
 SVCXPRT *xprt;
 gethostname(hostname, sizeof(hostname));

 s = RPC_ANYSOCK;
 x = gettransient(IPPROTO_UDP, 1, &s);
 fprintf(stderr, "client gets prognum %d\n", x);
 if ((xprt = svcudp_create(s)) == NULL)
 {
 fprintf(stderr, "rpc_server: svcudp_create\n");
 exit(1);
 }
 /* protocol is 0 - gettransient does registering */

 (void)svc_register(xprt, x, 1, callback,, 0);
 ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,
 EXAMPLEPROC_callback, xdr_int, &x, xdr_void, 0);
 if ((enum clnt_stat) ans != RPC_SUCCESS)
 {
 fprintf(stderr, "call: ");
 clnt_perrno(ans);
 fprintf(stderr, "\n");
 }
 svc_run();
 fprintf(stderr, "error: svc_run shouldn't return\n");
}
callback,(rqstp, transp)
 register struct svc_req *rqstp;
 register SVCXPRT *transp;
{
 switch (rqstp->rq_proc)
 {
 case 0:
 if (!svc_sendreply(transp, xdr_void, 0))
 {
 fprintf(stderr, "err: exampleprog\n ");
 return (1);
 }
 return (0);
 case 1:
 if (!svc_getargs(transp, xdr_void, 0))
 {
 svcerr_decode(transp);
 return (1);
 }
 fprintf(stderr, "client got callback,\n");
 if (!svc_sendreply(transp, xdr_void, 0))
 {
 fprintf(stderr, "err: exampleprog") ;
 return (1);
 }
 }
}

2–40 RPC/XDR Programmer's Reference

Programming Examples

Server

The server program:
/* server */
#include <stdio.h>
#include <rpc.h>
#include <signal.h>

char *getnewprog();
char hostname[256];
int docallback,();
int pnum; /* program number for callback, routine */

main()
{
 gethostname(hostname, sizeof(hostname));
 registerrpc(EXAMPLEPROG, EXAMPLEVERS,
 EXAMPLEPROC_callback,, getnewprog, xdr_int, xdr_void);
 fprintf(stderr, "server going into svc_run\n");
 signal(SIGALRM, docallback,);
 alarm(10);
 svc_run();
 fprintf(stderr, "error: svc_run shouldn't return\n");
}
char *
getnewprog(pnump)
 char *pnump;
{
 pnum = *(int *)pnump;
 return NULL;

}
docallback,()
{
 int ans;

 ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0, xdr_void, 0);
 if (ans != 0)
 {
 fprintf(stderr, "server: ");
 clnt_perrno(ans);
 fprintf(stderr, "\n");
 }
}

Using Remote Procedure Calls 2–41

Chapter

3 XDR: Technical Notes

This chapter contains technical notes on this implementation of the External Data
Representation (XDR) standard, a set of library routines that enable a C
programmer to describe arbitrary data structures in a machine-independent
fashion.

It includes these sections:

■ XDR Library Primitives—Provides a synopsis of each XDR primitive

■ Advanced Topics—Describes additional techniques for passing data
structures

For a formal specification of the XDR standard, read RFC 1014. XDR is the
backbone of the Remote Procedure Call package, in the sense that data for
remote procedure calls is transmitted using the standard. XDR library routines
should be used to transmit data that is accessed (read or written) by more than
one type of machine.

This chapter contains a short tutorial overview of the XDR library routines, a
guide to accessing currently available XDR streams, and information on defining
new streams and data types.

XDR was designed to work across different languages, operating systems, and
machine architectures.

Most users (particularly RPC users) only need this information:

■ Number Filters

■ Floating Point Filters

■ Enumeration Filters

If you want to implement RPC and XDR on new machines, read the rest of this
chapter, as well as RFCs 1014 and 1057, which are your primary references.

Note: You can use rpcgen to write XDR routines even in cases where no RPC
calls are being made.

XDR: Technical Notes 3–1

Justification

Justification
Consider the following writer and reader programs.

Writer
#include <stdio.h>
main() /* writer.c */
{
 long i;

 for (i = 0; i < 8; i++)
 {
 if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1)
 {
 fprintf(stderr, "failed!\n"); exit(1);
 }
 }
 exit(0);
}

Reader
#include <stdio.h>
main() /* reader.c */
{
 long i, j;

 for (j = 0; j < 8; j++)
 {
 if (fread((char *)&i, sizeof (i), 1, stdin) != 1)
 {
 fprintf(stderr, "failed!\n");
 exit(1);
 }
 printf("%ld ", i);
 }
 printf("\n");
 exit(0);
}

3–2 RPC/XDR Programmer's Reference

Justification

Execution Results

The two programs appear to be portable for these reasons:

■ They pass lint checking

■ They exhibit the same behavior when executed on two different hardware
architectures, a Sun and a VAX

Piping the output of the writer program to the reader program gives identical
results on a Sun or a VAX.
sun% writer | reader
3.0.1.1 1 2 3 4 5 6 7
sun%

vax% writer | reader
3.0.1.2 1 2 3 4 5 6 7
vax%

Network Pipes

With the advent of local area networks and 4.2BSD came the concept of network
pipes—a that process produces data on one machine, and a second process
consumes data on another machine. A network pipe can be constructed with
writer and reader.

Here are the results if the first produces data on a Sun, and the second consumes
data on a VAX.
sun% writer | rsh vax reader
3.0.1.3 16777216 33554432 50331648 67108864 83886080 100663296 117440512
sun%

Identical results can be obtained by executing writer on the VAX and reader on
the Sun. These results occur because the byte ordering of long integers differs
between the VAX and the Sun, even though the word size is the same.

For example, 16777216 is 224 – when four bytes are reversed, the one ends up in
the 24th bit.

Whenever data is shared by two or more machine types, there is a need for
portable data. Programs can be made data-portable by replacing the read() and
write() calls with calls to an XDR library routine xdr_long() a filter that knows
the standard representation of a long integer in its external form.

XDR: Technical Notes 3–3

Justification

Revised Writer

The following is the revised version of writer:
#include <stdio.h>
#include <rpc.h> /* xdr is a sub-library of rpc */

main() /* writer.c */
{
 XDR xdrs;
 long i;

 xdrstdio_create(&xdrs, stdout, XDR_ENCODE);
 for (i = 0; i < 8; i++)
 {
 if (!xdr_long(&xdrs, &i))
 {
 fprintf(stderr, "failed!\n");
 exit(1);
 }
 }
 exit(0);
}

Revised Reader

Here is the revised version of reader:
#include <stdio.h>
#include <rpc.h> /* xdr is a sub-library of rpc */
main() /* reader.c */
{
 XDR xdrs;
 long i, j;

 xdrstdio_create(&xdrs, stdin, XDR_DECODE);
 for (j = 0; j < 8; j++)
 {
 if (!xdr_long(&xdrs, &i))
 {
 fprintf(stderr, "failed!\n");
 exit(1);
 }
 printf("%ld ", i);
 }
 printf("\n");
 exit(0);
}

3–4 RPC/XDR Programmer's Reference

Justification

Revised Execution Results

The new programs were executed on a Sun, on a VAX, and from a Sun to a VAX
with these results:
sun% writer | reader
3.0.1.4 1 2 3 4 5 6 7
sun%

vax% writer | reader
3.0.1.5 1 2 3 4 5 6 7
vax%

sun% writer | rsh vax reader
3.0.1.6 1 2 3 4 5 6 7
sun%

Integers are just the tip of the portable-data iceberg. Arbitrary data structures
present portability problems, particularly with respect to alignment and
pointers. Alignment on word boundaries may cause the size of a structure to
vary from machine to machine. And pointers, which are very convenient to use,
have no meaning outside the machine where they are defined.

A Canonical Standard

XDR’s approach to standardizing data representations is canonical. That is, XDR
defines a single byte order (big-endian), a single floating-point representation
(IEEE), and so on. Any program running on any machine can use XDR to create
portable data by translating its local representation to the XDR standard
representations; similarly, any program running on any machine can read
portable data by translating the XDR standard representations to its local
equivalents.

The single standard completely de-couples programs that create or send portable
data from those that use or receive portable data. The advent of a new machine
or a new language has no effect on the community of existing portable data
creators and users. A new machine joins this community by being taught how to
convert the standard representations and its local representations; the local
representations of other machines are irrelevant. Conversely, to existing
programs running on other machines, the local representations of the new
machine are also irrelevant; such programs can immediately read portable data
produced by the new machine because such data conforms to the canonical
standards that they already understand.

There are strong precedents for XDR’s canonical approach (for example, TCP/IP,
UDP/IP, XNS, Ethernet, and, indeed, all protocols below layer five of the ISO
model, are canonical protocols). The advantage of any canonical approach is
simplicity; in the case of XDR, a single set of conversion routines is written once
and is never touched again. The canonical approach has a disadvantage, but it is
unimportant in real-world data transfer applications.

XDR: Technical Notes 3–5

Justification

Suppose two little endian machines are transferring integers according to the
XDR standard. The sending machine converts the integers from little-endian byte
order to XDR (big-endian) byte order; the receiving machine performs the
reverse conversion. Because both machines observe the same byte order, their
conversions are unnecessary. The point, however, is not necessity, but cost as
compared to the alternative.

The time spent converting to and from a canonical representation is insignificant,
especially in networking applications. Most of the time required to prepare a
data structure for transfer is not spent in conversion but in traversing the
elements of the data structure.

To transmit a tree, each leaf must be visited and each element in a leaf record
must be copied to a buffer and aligned there; storage for the leaf may have to be
deallocated as well. Similarly, to receive a tree, storage must be allocated for each
leaf, data must be moved from the buffer to the leaf and properly aligned, and
pointers must be constructed to link the leaves together.

Every machine pays the cost of traversing and copying data structures whether
or not conversion is required. In networking applications, communications
overhead—the time required to move the data down through the sender’s
protocol layers, across the network and up through the receiver’s protocol
layers—dwarfs conversion overhead.

The XDR Library

The XDR library not only solves data portability problems, it also lets you write
and read arbitrary C constructs in a consistent, specified, well-documented
manner. Thus, it can make sense to use the library even when the data is not
shared among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of bytes),
structures, unions, and arrays, to name a few. Using more primitive routines,
you can write your own specific XDR routines to describe arbitrary data
structures, including elements of arrays, arms of unions, or objects pointed at
from other structures. The structures themselves may contain arrays of arbitrary
elements, or pointers to other structures.

Examine the two programs more closely. There is a family of XDR stream
creation routines in which each member treats the stream of bits differently. In
the example, data is manipulated using standard I/O routines, so the example
uses xdrstdio_create(). The parameters to XDR stream creation routines vary
according to their function. In the example, xdrstdio_create() takes a pointer to
an XDR structure that it initializes, a pointer to a FILE that the input or output is
performed on, and the operation. The operation may be XDR_ENCODE for
serializing in the writer program, or XDR_DECODE for deserializing in the
reader program.

3–6 RPC/XDR Programmer's Reference

Justification

Note: RPC users never need to create XDR streams; the RPC system itself creates
these streams, which are then passed to the users.

The xdr_long Primitive

The xdr_long() primitive is characteristic of most XDR library primitives and all
client XDR routines. First, the routine returns FALSE (0) if it fails, and TRUE (1)
if it succeeds. Second, for each data type, xxx, there is an associated XDR routine
of this form:
xdr_xxx(xdrs, xp)
 XDR *xdrs;
 xxx *xp;
{

}

In this case, xxx is long, and the corresponding XDR routine is a primitive,
xdr_long() The client could also define an arbitrary structure xxx, in which case
the client would also supply the routine xdr_xxx(), describing each field by
calling XDR routines of the appropriate type. In all cases, the first parameter,
xdrs can be treated as an opaque handle and passed to the primitive routines.

Direction Independence

XDR routines are direction independent; the same routines are called to serialize
or deserialize data. This is critical to software engineering of portable data. The
same routine is called for either operation – this almost guarantees that serialized
data can also be deserialized. One routine is used by both producer and
consumer of networked data. This is implemented by always passing the
address of an object rather than the object itself – only in the case of
deserialization is the object modified. This feature is not shown in the trivial
example, but its value becomes obvious when non-trivial data structures are
passed among machines. If needed, the user can obtain the direction of the XDR
operation. See XDR Operation Directions for details.

Here is a slightly more complicated example. Assume that a person’s gross
assets and liabilities are to be exchanged among processes. Also assume that
these values are important enough to warrant their own data type:
struct gnumbers
{
 long g_assets;
 long g_liabilities;
};

XDR: Technical Notes 3–7

Justification

This is the corresponding XDR routine describing this structure:
bool_t /* TRUE is success, FALSE is failure */
xdr_gnumbers(xdrs, gp)
 XDR *xdrs;
 struct gnumbers *gp;
{
 if (xdr_long(xdrs, &gp->g_assets) &&
 xdr_long(xdrs, &gp->g_liabilities))
 return(TRUE);
 return(FALSE);
}

Note: The parameter xdrs is never inspected or modified. It is only passed on to
the subcomponent routines. It is imperative to inspect the return value of each
XDR routine call, and to give up immediately and return FALSE if the
subroutine fails.

This example also shows that the type bool_t is declared as an integer whose
only values are TRUE (1) and FALSE (0). This document uses these definitions:

#define bool_t int

#define TRUE 1

#define FALSE 0

Using these conventions, xdr_gnumbers() can be rewritten in this way:
xdr_gnumbers(xdrs, gp)
 XDR *xdrs;
 struct gnumbers *gp;
{
 return(xdr_long(xdrs, &gp->g_assets) &&
 xdr_long(xdrs, &gp->g_liabilities));
}

This document uses both coding styles.

3–8 RPC/XDR Programmer's Reference

XDR Library Primitives

XDR Library Primitives
This section gives a synopsis of each XDR primitive. It starts with basic data
types and moves on to constructed data types. Finally, XDR utilities are
discussed. The interface to these primitives and utilities is defined in the include
file <xdr.h>, automatically included by <rpc.h>.

Number Filters

The XDR library provides primitives to translate between numbers and their
corresponding external representations. Primitives cover the set of numbers in
these formats:
[signed, unsigned] * [short, int, long]

These are the specific primitives:
bool_t xdr_char(xdrs, cp)
 XDR *xdrs;
 char *cp;
bool_t xdr_u_char(xdrs, ucp)
 XDR *xdrs;
 unsigned char *ucp;
bool_t xdr_int(xdrs, ip)
 XDR *xdrs;
 int *ip;
bool_t xdr_u_int(xdrs, up)
 XDR *xdrs;
 unsigned *up;
bool_t xdr_long(xdrs, lip)
 XDR *xdrs;
 long *lip;
bool_t xdr_u_long(xdrs, lup)
 XDR *xdrs;
 u_long *lup;
bool_t xdr_short(xdrs, sip)
 XDR *xdrs;
 short *sip;
bool_t xdr_u_short(xdrs, sup)
 XDR *xdrs;
 u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter is the
address of the number that provides data to the stream or receives data from it.
All routines return TRUE if they complete successfully, and FALSE otherwise.

XDR: Technical Notes 3–9

XDR Library Primitives

Floating Point Filters

The XDR library also provides primitive routines for C floating point types, as
this example shows:
bool_t xdr_float(xdrs, fp)
 XDR *xdrs;
 float *fp;
bool_t xdr_double(xdrs, dp)
 XDR *xdrs;
 double *dp;

The first parameter, xdrs is an XDR stream handle. The second parameter is the
address of the floating point number that provides data to the stream or receives
data from it. Both routines return TRUE if they complete successfully, and
FALSE otherwise.

Note: Since the numbers are represented in IEEE floating point, routines may
fail when decoding a valid IEEE representation into a machine-specific
representation, or vice-versa.

Enumeration Filters

The XDR library provides a primitive for generic enumerations. The primitive
assumes that a C enum has the same representation inside the machine as a C
integer. The boolean type is an important instance of the enum. The external
representation of a boolean is always TRUE (1) or FALSE (0).
#define bool_t int
#define FALSE 0
#define TRUE 1

#define enum_t int

bool_t xdr_enum(xdrs, ep)
 XDR *xdrs;
 enum_t *ep;

bool_t xdr_bool(xdrs, bp)
 XDR *xdrs;
 bool_t *bp;

The second parameters ep and bp are addresses of the associated type that
provides data to, or receives data from, the stream xdrs.

3–10 RPC/XDR Programmer's Reference

XDR Library Primitives

No Data

Occasionally, an XDR routine must be supplied to the RPC system, even when
no data is passed or required. The library provides such a routine:
bool_t xdr_void(); /* always returns TRUE */

Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and
perform more complicated functions than the primitives previously discussed in
this section. This section includes primitives for strings, arrays, unions, and
pointers to structures.

Constructed data type primitives may use memory management. In many cases,
memory is allocated when deserializing data with XDR_DECODE. Therefore, the
XDR package must provide a means to deallocate memory. This is done by an
XDR operation, XDR_FREE. To review, the three XDR directional operations are
XDR_ENCODE, XDR_DECODE and XDR_FREE.

Strings

In C, a string is defined as a sequence of bytes terminated by a null byte, which is
not considered when calculating string length. However, when a string is passed
or manipulated, a pointer to it is employed. Therefore, the XDR library defines a
string to be a char * and not a sequence of characters. The external representation
of a string is drastically different from its internal representation. Externally,
strings are represented as sequences of ASCII characters, while internally, they
are represented with character pointers. Conversion between the two
representations is accomplished with the routine xdr_string():
bool_t xdr_string(xdrs, sp, maxlength)
 XDR *xdrs;
 char **sp;
 u_int maxlength;

xdrs The XDR stream handle.

sp A pointer to a string (type char **).

maxlength Specifies the maximum number of bytes allowed during encoding or decoding.
Its value is usually specified by a protocol.
For example, a protocol specification may say that a file name may be no longer
than 255 characters.

Note: It is recommended that you keep maxlength small. If it is too big you can
blow the heap, since xdr_string() calls malloc() for space. The routine returns
FALSE if the number of characters exceeds maxlength, and TRUE if it does not.

XDR: Technical Notes 3–11

XDR Library Primitives

The behavior of xdr_string() is similar to the behavior of other routines discussed
in this section. The direction XDR_ENCODE is easiest to understand. The
parameter sp points to a string of a certain length; if the string does not exceed
maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming
string is determined; it must not exceed maxlength. Next sp is dereferenced; if
the value is NULL, then a string of the appropriate length is allocated and *sp is
set to this string. If the original value of *sp is non-null, then the XDR package
assumes that a target area has been allocated, which can hold strings no longer
than maxlength. In either case, the string is decoded into the target area. The
routine then appends a null character to the string.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If the
string is not NULL, it is freed and *sp is set to NULL. In this operation,
xdr_string() ignores the maxlength parameter.

Byte Arrays

Often, variable-length arrays of bytes are preferable to strings. Byte arrays differ
from strings in these ways:

■ The length of the array (the byte count) is explicitly located in an unsigned
integer.

■ The byte sequence is not terminated by a null character.

■ The external representation of the bytes is the same as their internal
representation.

The primitive xdr_bytes() converts between the internal and external
representations of byte arrays:
bool_t xdr_bytes(xdrs, bpp, lp, maxlength)
 XDR *xdrs;
 char **bpp;
 u_int *lp;
 u_int maxlength;

The usage of the first, second and fourth parameters are identical to the first,
second and third parameters of xdr_string(), respectively. The length of the byte
area is obtained by dereferencing lp when serializing; *lp is set to the byte length
when deserializing.

3–12 RPC/XDR Programmer's Reference

XDR Library Primitives

Arrays

The XDR library package provides a primitive for handling arrays of arbitrary
elements. The xdr_bytes() routine treats a subset of generic arrays, in which the
size of array elements is known to be 1, and the external description of each
element is built-in. The generic array primitive, xdr_array() requires parameters
identical to those of xdr_bytes() plus two more: the size of array elements, and
an XDR routine to handle each of the elements.

This routine is called to encode or decode each element of the array.
bool_t
xdr_array(xdrs, ap, lp, maxlength, elementsiz, xdr_element)
 XDR *xdrs;
 char **ap;
 u_int *lp;
 u_int maxlength;
 u_int elementsiz;
 bool_t (*xdr_element)();

The parameter ap is the address of the pointer to the array. If *ap is NULL when
the array is being deserialized, XDR allocates an array of the appropriate size
and sets *ap to that array. The element count of the array is obtained from *lp
when the array is serialized; *lp is set to the array length when the array is
deserialized. The parameter maxlength is the maximum number of elements that
the array may have; elementsiz is the byte size of each element of the array (the
C function sizeof() can be used to obtain this value). The xdr_element() routine is
called to serialize, deserialize, or free each element of the array.

Before defining more constructed data types, it is appropriate to present these
examples.

XDR: Technical Notes 3–13

XDR Library Primitives

Example A A user on a networked machine can be identified in these ways:

■ By the machine name, such as krypton: see the gethostname man page

■ By the user’s UID

■ By the group numbers to which the user belongs: see the getgroups man
page

A structure with this information and its associated XDR routine could be coded
like this:
struct netuser
{
 char *nu_machinename;
 int nu_uid;
 u_int nu_glen;
 int *nu_gids;
};
#define NLEN 255 /* machine names < 256 chars */
#define NGRPS 20 /* user can't be in > 20 groups */

bool_t
xdr_netuser(xdrs, nup)
 XDR *xdrs;
 struct netuser *nup;
{
 return(xdr_string(xdrs, &nup->nu_machinename, NLEN) &&
 xdr_int(xdrs, &nup->nu_uid) &&
 xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen,
 NGRPS, sizeof (int), xdr_int));
}

Example B A group of network users could be implemented as an array of netuser structure.
This is the declaration and its associated XDR routines:
struct party
{
 u_int p_len;
 struct netuser *p_nusers;
};
#define PLEN 500 /* max number of users in a party */

bool_t
xdr_party(xdrs, pp)
 XDR *xdrs;
 struct party *pp;
{
 return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,
 sizeof (struct netuser), xdr_netuser));
}

3–14 RPC/XDR Programmer's Reference

XDR Library Primitives

Example C The well-known parameters to main, argc, and argv can be combined into a
structure. An array of these structures can make up a history of commands. The
declarations and XDR routines might look like this:
struct cmd
{
 u_int c_rgc;
 char **c_argv;
};
#define ALEN 1000 /* args cannot be > 1000 chars */
#define NARGC 100 /* commands cannot have > 100 args */

struct history
{
 u_int h_len;
 struct cmd *h_cmds;
};
#define NCMDS 75 /* history is no more than 75 commands */

bool_t
xdr_wrap_string(xdrs, sp)
 XDR *xdrs;
 char **sp;
{
 return(xdr_string(xdrs, sp, ALEN));
}
bool_t
xdr_cmd(xdrs, cp)
 XDR *xdrs;
 struct cmd *cp;
{
 return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,
 sizeof (char *), xdr_wrap_string));
}
bool_t
xdr_history(xdrs, hp)
 XDR *xdrs;
 struct history *hp;]
{] return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,
 sizeof (struct cmd), xdr_cmd));
}

The most confusing part of this example is that the routine xdr_wrap_string() is
needed to package the xdr_string() routine, because the implementation of
xdr_array() only passes two parameters to the array element description routine;
xdr_wrap_string() supplies the third parameter to xdr_string().

By now the recursive nature of the XDR library should be obvious. The following
examples continue with more constructed data types.

XDR: Technical Notes 3–15

XDR Library Primitives

Opaque Data

In some protocols, handles are passed from a server to client. The client passes
the handle back to the server at some later time. Handles are never inspected by
clients; they are obtained and submitted. That is to say, handles are opaque. The
xdr_opaque() primitive is used for describing fixed sized, opaque bytes.
bool_t xdr_opaque(xdrs, p, len)
 XDR *xdrs;
 char *p;
 u_int len;

The parameter p is the location of the bytes; len is the number of bytes in the
opaque object. By definition, the actual data contained in the opaque object is not
machine portable.

Fixed Sized Arrays

The XDR library provides a primitive, xdr_vector(), for fixed-length arrays.
#define NLEN 255 /* machine names must be < 256 chars */
#define NGRPS 20 /* user belongs to exactly 20 groups */

struct netuser
{
 char *nu_machinename;
 int nu_uid;
 int nu_gids[NGRPS];
};

bool_t
xdr_netuser(xdrs, nup)
 XDR *xdrs;
 struct netuser *nup;
{
 int i;

 if (!xdr_string(xdrs, &nup->nu_machinename, NLEN))
 return(FALSE);
 if (!xdr_int(xdrs, &nup->nu_uid))
 return(FALSE);
 if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int), xdr_int))
 {
 return(FALSE);
 }
 return(TRUE);
}

3–16 RPC/XDR Programmer's Reference

XDR Library Primitives

Discriminated Unions

The XDR library supports discriminated unions. A discriminated union is a C
union and an enum_t value that selects an “arm” of the union.
struct xdr_discrim
{
 enum_t value;
 bool_t (*proc)();
};
bool_t xdr_union(xdrs, dscmp, unp, arms, defaultarm)
 XDR *xdrs;
 enum_t *dscmp;
 char *unp;
 struct xdr_discrim *arms;
 bool_t (*defaultarm)(); /* may equal NULL */

The routine translates the discriminant of the union located at *dscmp. The
discriminant is always an enum_t. The union located at *unp is then translated.
The parameter arms is a pointer to an array of xdr_discrim structures.

Each structure contains an ordered pair of [value,proc]. If the union’s
discriminant is equal to the associated value, then the proc is called to translate
the union. The end of the xdr_discrim structure array is denoted by a routine of
value NULL (0). If the discriminant is not found in the arms array, then the
defaultarm procedure is called if it is non-null; otherwise the routine returns
FALSE.

Example D Suppose the type of a union may be integer, character pointer (a string), or a
gnumbers structure. Also, assume the union and its current type are declared in
a structure. This is the declaration:
enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };
struct u_tag
{
 enum utype utype; /* the union's discriminant */
 union
 {
 int ival;
 char *pval;
 struct gnumbers gn;
 }
 uval;
};

These constructs and XDR procedure (de)serialize the discriminated union.

XDR: Technical Notes 3–17

XDR Library Primitives

struct xdr_discrim u_tag_arms[4] =
{
 { INTEGER, xdr_int },
 { GNUMBERS, xdr_gnumbers }
 { STRING, xdr_wrap_string },
 { __dontcare__, NULL }

 /* always terminate arms with a NULL xdr_proc */
}

bool_t
xdr_u_tag(xdrs, utp)
 XDR *xdrs;
 struct u_tag *utp;
{
 return(xdr_union(xdrs, &utp->utype, &utp->uval,

 u_tag_arms, NULL));
}

The routine xdr_gnumbers() was presented in The XDR Library .
xdr_wrap_string() was presented in Example C. The default arm parameter to
xdr_union() (the last parameter) is NULL in this example. Therefore the value of
the union’s discriminant may legally take on only values listed in the
u_tag_arms array. This example also demonstrates that the elements of the arms
array do not need to be sorted.

It is worth pointing out that the values of the discriminant may be sparse, though
in this example they are not. It is always good practice to assign explicitly integer
values to each element of the discriminant’s type. This practice both documents
the external representation of the discriminant and guarantees that different C
compilers emit identical discriminant values.

Pointers

In C, it is often convenient to put pointers to another structure within a structure.
The xdr_reference() primitive makes it easy to serialize, deserialize, and free
these referenced structures.
bool_t xdr_reference(xdrs, pp, size, proc)
 XDR *xdrs;
 char **pp;
 u_int ssize;
 bool_t (*proc)();

Parameter pp is the address of the pointer to the structure; parameter ssize is the
size in bytes of the structure (use the C function sizeof() to obtain this value); and
proc is the XDR routine that describes the structure.

When decoding data, storage is allocated if *pp is NULL. There is no need for a
primitive xdr_struct() to describe structures within structures, because pointers
are always sufficient.

3–18 RPC/XDR Programmer's Reference

XDR Library Primitives

Example E Suppose there is a structure containing a person’s name and a pointer to a
gnumbers structure containing the person’s gross assets and liabilities.

This is the construct:
struct pgn
{
 char *name;
 struct gnumbers *gnp;
};

This is the corresponding XDR routine for this structure:
bool_t
xdr_pgn(xdrs, pp)
 XDR *xdrs;
 struct pgn *pp;
{
 if (xdr_string(xdrs, &pp->name, NLEN) &&
 xdr_reference(xdrs, &pp->gnp,
 sizeof(struct gnumbers), xdr_gnumbers))
 return(TRUE);
 return(FALSE);
}

Pointer Semantics and XDR

In many applications, C programmers attach double meaning to the values of a
pointer. Typically, the value NULL (or zero) means data is not needed, yet some
application-specific interpretation applies. In essence, the C programmer is
encoding a discriminated union efficiently by overloading the interpretation of
the value of a pointer.

In Example E, a NULL pointer value for gnp could indicate that the person’s
assets and liabilities are unknown). The pointer value encodes two pieces of
information: whether or not the data is known; and if it is known, where it is
located in memory.

Linked lists are an extreme example of the use of application-specific pointer
interpretation.

The primitive xdr_reference() cannot and does not attach any special meaning to
a null-value pointer during serialization – passing an address of a pointer whose
value is NULL to xdr_reference() when serializing data most likely causes a
memory fault and, on the UNIX system, a core dump. xdr_pointer() correctly
handles NULL pointers. For more information about its use, see Advanced
Topics .

XDR: Technical Notes 3–19

XDR Library Primitives

Non-Filter Primitives

XDR streams can be manipulated with the primitives discussed in this section.
u_int xdr_getpos(xdrs)
 XDR *xdrs;

bool_t xdr_setpos(xdrs, pos)
 XDR *xdrs;
 u_int pos;

xdr_destroy(xdrs)
 XDR *xdrs;

The routine xdr_getpos() returns an unsigned integer that describes the current
position in the data stream.

In some XDR streams, the returned value of xdr_getpos() is meaningless; the
routine returns a -1 in this case (though -1 should be a legitimate value).

The routine xdr_setpos() sets a stream position to positive.

In some XDR streams, setting a position is impossible; in such cases, xdr_setpos()
returns FALSE. This routine also fails if the requested position is out-of-bounds.
The definition of bounds varies from stream to stream.

The xdr_destroy() primitive destroys the XDR stream. Usage of the stream after
calling this routine is undefined.

XDR Operation Directions

At times you may want to optimize XDR routines by taking advantage of the
direction of the operation – XDR_ENCODE, XDR_DECODE or XDR_FREE. The
value xdrs->x_op always contains the direction of the XDR operation.
Programmers are not encouraged to take advantage of this information.
Therefore, no example is presented here. However, an example in Memory
Streams demonstrates the usefulness of the xdrs->x_op field.

XDR Stream Access

An XDR stream is obtained by calling the appropriate creation routine. These
creation routines take arguments that are tailored to the specific properties of the
stream. Streams currently exist for (de)serialization of data to or from standard
I/O FILE streams, TCP/IP connections, and memory.

3–20 RPC/XDR Programmer's Reference

XDR Library Primitives

Standard I/O Streams

XDR streams can be interfaced to standard I/O using this xdrstdio_create()
routine:
#include <stdio.h>
#include <rpc.h> /* xdr streams part of rpc */

void
xdrstdio_create(xdrs, fp, x_op)
 XDR *xdrs;
 FILE *fp;
 enum xdr_op x_op;

The routine xdrstdio_create() initializes an XDR stream pointed to by xdrs. The
XDR stream interfaces to the standard I/O library. Parameter fp is an open file,
and x_op is an XDR direction.

Memory Streams

Memory streams allow the streaming of data into or out of a specified area of
memory, as shown below:
#include <rpc.h>

void
xdrmem_create(xdrs, addr, len, x_op)
 XDR *xdrs;
 char *addr;
 u_int len;
 enum xdr_op x_op;

The routine xdrmem_create() initializes an XDR stream in local memory. The
memory is pointed to by parameter addr; parameter len is the length in bytes of
the memory. The parameters xdrs and x_op are identical to the corresponding
parameters of xdrstdio_create(). Currently, the UDP/IP implementation of RPC
uses xdrmem_create(). Complete call or result messages are built in memory
before calling the sendto() system routine.

Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record marking standard that
is built on top of the TCP socket.
#include <rpc.h> /* xdr streams part of rpc */

xdrrec_create(xdrs,
 sendsize, recvsize, iohandle, readproc, writeproc)
 XDR *xdrs;
 u_int sendsize, recvsize;
 char *iohandle;
 int (*readproc)(), (*writeproc)();

XDR: Technical Notes 3–21

XDR Library Primitives

The routine xdrrec_create() provides an XDR stream interface that allows for a
bidirectional, arbitrarily long sequence of records. The contents of the records are
meant to be data in XDR form. The stream’s primary use is for interfacing RPC to
TCP connections. However, it can be used to stream data into or out of normal
UNIX files.

The parameter xdrs is similar to the corresponding parameter previously
described. The stream does its own data buffering similar to that of standard
I/O. The parameters sendsize and recvsize determine the size in bytes of the
output and input buffers, respectively; if their values are zero (0), then
predetermined defaults are used.

When a buffer needs to be filled or flushed, the routine readproc() or writeproc()
is called, respectively. The usage and behavior of these routines are similar to the
UNIX system calls read() and write(). However, the first parameter to each of
these routines is the opaque parameter iohandle. The other two parameters (buf
and nbytes) and the results (byte count) are identical to the system routines. If
xxx is readproc() or writeproc(), then it has these form:
/* returns the actual number of bytes transferred
 * -1 is an error */

int
xxx(iohandle, buf, len)
 char *iohandle;
 char *buf;
 int nbytes;

The XDR stream provides means for delimiting records in the byte stream. The
implementation details of delimiting records in a stream are discussed in
Advanced Topics . The primitives that are specific to record streams are:
bool_t
xdrrec_endofrecord(xdrs, flushnow)
 XDR *xdrs;
 bool_t flushnow;

bool_t
xdrrec_skiprecord(xdrs)
 XDR *xdrs;

bool_t
xdrrec_eof(xdrs)
 XDR *xdrs;

The routine xdrrec_endofrecord() causes the current outgoing data to be marked
as a record. If the flushnow parameter is TRUE, then the stream’s writeproc is
called; otherwise, writeproc is called when the output buffer has been filled.

The routine xdrrec_skiprecord() causes an input stream’s position to be moved
past the current record boundary and onto the beginning of the next record in
the stream. If there is no more data in the stream’s input buffer, then the routine
xdrrec_eof() returns TRUE. That is not to say that there is no more data in the
underlying file descriptor.

3–22 RPC/XDR Programmer's Reference

XDR Library Primitives

XDR Stream Implementation

This section provides the abstract data types needed to implement new instances
of XDR streams.

The XDR Object

This structure defines the interface to an XDR stream:
enum xdr_op { XDR_ENCODE=0, XDR_DECODE=1, XDR_FREE=2 };
typedef struct
{
 enum xdr_op x_op; /* operation; fast added param */
 struct xdr_ops
 {
 bool_t (*x_getlong)(); /* get long from stream */
 bool_t (*x_putlong)(); /* put long to stream */
 bool_t (*x_getbytes)(); /* get bytes from stream */
 bool_t (*x_putbytes)(); /* put bytes to stream */
 u_int (*x_getpostn)(); /* return stream offset */
 bool_t (*x_setpostn)(); /* reposition offset */
 caddr_t (*x_inline)(); /* ptr to buffered data */
 VOID (*x_destroy)(); /* free private area */
 }
 *x_ops;
 caddr_t x_public; /* users' data */
 caddr_t x_private; /* pointer to private data */
 caddr_t x_base; /* private for position info */
 int x_handy; /* extra private word */
}
XDR;

The x_op field is the current operation being performed on the stream. This field
is important to the XDR primitives, but should not affect a stream’s
implementation. That is, a stream’s implementation should not depend on this
value. The fields x_private, x_base, and x_handy are private to the particular
stream’s implementation. The field x_public is for the XDR client and should
never be used by the XDR stream implementations or the XDR primitives.
x_getpostn() x_setpostn(), and x_destroy() are macros for accessing operations.
The operation x_inline() takes two parameters: an XDR *, and an unsigned
integer, which is a byte count. The routine returns a pointer to a piece of the
stream’s internal buffer. The caller can then use the buffer segment for any
purpose.

From the stream’s point of view, the bytes in the buffer segment have been
consumed or put. The routine may return NULL if it cannot return a buffer
segment of the requested size.

Note: The x_inline()routine is for cycle squeezers. Use of the resulting buffer is
not data-portable. Users are encouraged not to use this feature.

XDR: Technical Notes 3–23

XDR Library Primitives

The operations x_getbytes() and x_putbytes() blindly get and put sequences of
bytes from or to the underlying stream; they return TRUE if they are successful,
and FALSE otherwise. The routines have identical parameters (replace xxx):
bool_t
xxxbytes(xdrs, buf, bytecount)
 XDR *xdrs;
 char *buf;
 u_int bytecount;

The operations x_getlong() and x_putlong() receive and put long numbers from
and to the data stream. It is the responsibility of these routines to translate the
numbers between the machine representation and the (standard) external
representation. The network utility primitives htonl() and ntohl() can be helpful
in accomplishing this.

The higher-level XDR implementation assumes that signed and unsigned long
integers contain the same number of bits, and that nonnegative integers have the
same bit representations as unsigned integers. The routines return TRUE if they
succeed, and FALSE otherwise. They have identical parameters. Here is an
example:
bool_t
xxxlong(xdrs, lp)
 XDR *xdrs;
 long *lp;

Implementors of new XDR streams must make an XDR structure (with new
operation routines) available to clients, using some kind of create routine.

3–24 RPC/XDR Programmer's Reference

Advanced Topics

Advanced Topics
This section describes techniques for passing data structures that are not covered
in the preceding sections. Such structures include linked lists (of arbitrary
lengths). Unlike the simpler examples covered in the earlier sections, the
examples in this section are written using both the XDR C library routines and
the XDR data description language. Read the XDR Protocol Specification, RFC
1014, for a complete description of this language.

Linked Lists

The previous example in Example D presented a C data structure and its
associated XDR routines for an individual’s gross assets and liabilities. This
example is duplicated here:
struct gnumbers
{
 long g_assets;
 long g_liabilities;
};
bool_t
xdr_gnumbers(xdrs, gp)
 XDR *xdrs;
 struct gnumbers *gp;
{
 if (xdr_long(xdrs, &(gp->g_assets)))
 return(xdr_long(xdrs, &(gp->g_liabilities))); return(FALSE);
}

To implement a linked list of such information, a data structure could be
constructed like this:
struct gnumbers_node
{
 struct gnumbers gn_numbers;
 struct gnumbers_node *gn_next;
};

typedef struct gnumbers_node *gnumbers_list;

The head of the linked list can be thought of as the data object (i.e., the head is
not merely a convenient shorthand for a structure). Similarly the gn_next field is
used to indicate whether or not the object has terminated. Unfortunately, if the
object continues, the gn_next field is also the address of where it continues.

XDR: Technical Notes 3–25

Advanced Topics

Serialized Objects

The link addresses carry no useful information when the object is serialized. The
XDR data description of this linked list is described by this recursive declaration
of gnumbers_list:
struct gnumbers
{
 int g_assets;
 int g_liabilities;
};

struct gnumbers_node
{
 gnumbers gn_numbers;
 gnumbers_node *gn_next;
};

In this description, the boolean indicates whether there is more data following it.
If the boolean is FALSE, then it is the last data field of the structure. If it is TRUE,
then it is followed by a gnumbers structure and (recursively) by a gnumbers_list.

Note: The C declaration has no boolean explicitly declared in it (though the
gn_next field implicitly carries the information), while the XDR data description
has no pointer explicitly declared in it.

Hints for Writing XDR Routines

Hints for writing the XDR routines for a gnumbers_list follow easily from the
previous XDR description. The primitive xdr_pointer() is used to implement the
previous XDR union:
bool_t
xdr_gnumbers_node(xdrs, gn)
 XDR *xdrs;
 gnumbers_node *gn;
{
 return(xdr_gnumbers(xdrs, &gn->gn_numbers) &&
 xdr_gnumbers_list(xdrs, &gp->gn_next));
}

bool_t
xdr_gnumbers_list(xdrs, gnp)
 XDR *xdrs;
 gnumbers_list *gnp;
{
 return(xdr_pointer(xdrs, gnp,
 sizeof(struct gnumbers_node),
 xdr_gnumbers_node));
}

3–26 RPC/XDR Programmer's Reference

Advanced Topics

A Non-Recursive Example

The unfortunate side effect of XDRing a list with these routines is that the C
stack grows linearly with respect to the number of nodes in the list. This is due to
the recursion. This routine collapses the previous two mutually recursive
procedures into a single, non-recursive one.
bool_t
xdr_gnumbers_list(xdrs, gnp)
 XDR *xdrs;
 numbers_list *gnp;
{
 bool_t more_data;
 gnumbers_list *nextp;

 for (;;)
 {
 more_data = (*gnp != NULL);
 if (!xdr_bool(xdrs, &more_data))
 {
 return(FALSE);
 }
 if (! more_data)
 {
 break;
 }
 if (xdrs->x_op == XDR_FREE)
 {
 nextp = &(*gnp)->gn_next;
 }
 if (!xdr_reference(xdrs, gnp, sizeof(struct
 gnumbers_node), xdr_gnumbers))
 {
 return(FALSE);
 }
 gnp = (xdrs->x_op == XDR_FREE) ?
 nextp : &(*gnp)->gn_next;
 }
 *gnp = NULL;
 return(TRUE);
}

XDR: Technical Notes 3–27

Advanced Topics

Tasks Performed

This example performs these tasks:

1. Finds out whether there is more data or not, so that this boolean information
can be serialized.

This statement is unnecessary in the XDR_DECODE case, since the value of
more_data is not known until it is deserialized in the next statement.

2. Does an XDR on the more_data field of the XDR union. Then if there is truly
no more data, the last pointer is set to NULL to indicate the end of the list,
and returns TRUE because it is done.

Setting the pointer to NULL is only important in the XDR_DECODE case,
since it is already NULL in the XDR_ENCODE and XDR_FREE cases.

3. If the direction is XDR_FREE, the value of nextp is set to indicate the location
of the next pointer in the list. This is done now because gnp needs to be de-
referenced to find the location of the next item in the list, and after the next
statement the storage pointed to by gnp is freed up and is no longer valid.
This cannot be done for all directions though, because in the XDR_DECODE
direction, the value of gnp is not set until the next statement.

4. An XDR is done on the data in the node using the primitive xdr_reference().
xdr_reference() is like xdr_pointer(), which was previously used, but it does
not send over the boolean indicating whether there is more data. It is used
instead of xdr_pointer() because you already did an XDR on this
information.

The XDR routine passed is not the same type as an element in the list. The
routine passed is xdr_gnumbers(), for XDRing gnumbers, but each element
in the list is actually of type gnumbers_node. xdr_gnumbers_node() is not
passed because it is recursive; xdr_gnumbers() is used instead, which does
an XDR on all of the non-recursive part.

This works only if the gn_numbers field is the first item in each element, so
that their addresses are identical when passed to xdr_reference().

5. gnp is updated to point to the next item in the list. If the direction is
XDR_FREE, it is set to the previously saved value, otherwise gnp is de-
referenced to get the proper value.

Though harder to understand than the recursive version, this non-recursive
routine is far less likely to blow the C stack. It also runs more efficiently since
a lot of procedure call overhead has been removed. Most lists are small,
though, (in the hundreds of items or less) and the recursive version should
be sufficient for them.

3–28 RPC/XDR Programmer's Reference

Chapter

4 Using rpcgen

This chapter describes the rpcgen compiler. It includes these sections:

■ What rpcgen Does—Describes the rpcgen compiler and its input, output,
and interfaces

■ Converting Local Procedures into Remote Procedures—Uses a printmessage
example to illustrate converting a local procedure to a remote procedure.
Describes the RPC steps involved and the steps for completing the
conversion process

■ Generating XDR Routines—Provides an example protocol description file
and explains XDR routines for converting data types as well as how to test
the client and server procedures together

■ The C Preprocessor—Describes the symbols that may be defined and
includes a description of rpcgen preprocessing

■ rpcgen Programming Notes—Includes timeout changes, handling broadcast
on the server side, and other information passed to server procedures

■ The RPC Language—Describes definitions, structures, unions, enumerations,
typedefs, constants, programs, declarations, and special cases

What rpcgen Does
The rpcgen compiler exists to help you write RPC applications simply and
directly. rpcgen does most of the work, letting you debug the main features of
your application, instead of requiring you to spend most of your time debugging
your network interface code.

Note: The rpcgen compiler is not supplied with the Unicenter TCPaccess
Communications Server RPC/XDR product but may be available on remote
workstations. It can be useful to generate C language output, which can then be
transferred to the mainframe.

Using rpcgen 4–1

What rpcgen Does

How rpcgen Works

rpcgen is a compiler. It accepts a remote program interface definition written in a
language, called RPC Language, which is similar to C. It produces a C language
output that includes stub versions of the client routines, a server skeleton, XDR
filter routines for both parameters and results, and a header file that contains
common definitions.

The client stubs interface with the RPC library and effectively hide the network
from their callers. The server stub similarly hides the network from the server
procedures that are invoked by remote clients. rpcgen’s output files can be
compiled and linked in the usual way.

You write server procedures and link them with the server skeleton, produced
by rpcgen, to get an executable server program. To use a remote program, you
write an ordinary main program that makes local procedure calls to the client
stubs produced by rpcgen. Linking this program with rpcgen’s stubs creates an
executable program. (At present, the main program must be written in C).
rpcgen options can be used to suppress stub generation and to specify the
transport to be used by the server stub.

Like all compilers, rpcgen reduces development time that would otherwise be
spent coding and debugging low-level routines at a small cost in efficiency and
flexibility. In addition, like many compilers, rpcgen allows escape hatches for
programmers to mix low-level code with high-level code. In speed-critical
applications, hand-written routines can be linked with the rpcgen output
without any difficulty. Also, you may proceed by using rpcgen output as a
starting point, and then rewriting it as necessary. For a discussion of RPC
programming without rpcgen, see Using Remote Procedure Calls.

4–2 RPC/XDR Programmer’s Reference

Converting Local Procedures into Remote Procedures

Converting Local Procedures into Remote Procedures
One task that may need to be done is to convert an application that runs on a
single machine to one that runs over the network.

A printmessage Example

The following example—a program, printmessage, that prints a message to the
console—is converted so that a message can be sent to the console from
anywhere in the system:
/* printmsg.c: print a message on the console */

#include <stdio.h>

main(argc, argv)
 int argc;
 char *argv[];
{
 char *message;

 if (argc != 2)
 {
 fprintf(stderr, "usage: %s <message>\n", argv[0]);
 exit(1);
 }
 message = argv[1];

 if (!printmessage(message))
 {
 fprintf(stderr, "%s: couldn't print your message\n", argv[0]);
 exit(1);
 }
 printf("Message Delivered!\n");
 exit(0);
}

 /* Print a message to the console. Return a boolean indicating
 * whether the message was actually printed. */

printmessage(msg)
 char *msg;
{
 FILE *f;

 f = fopen("/dev/console", "w");
 if (f == NULL)
 {
 return (0);
 }
 fprintf(f, "%s\n", msg);
 fclose(f);
 return(1);
}
And then, of course:
example% cc printmsg.c -o printmsg
example% printmsg "Hello, there."
Message delivered!
example%

Using rpcgen 4–3

Converting Local Procedures into Remote Procedures

Remote Procedures Steps

If printmessage is turned into a remote procedure, it can be called from
anywhere in the network. Ideally, you would only insert a keyword, like remote,
in front of a procedure to turn it into a remote procedure.

Determine Procedure Input and Output Types

You must first determine what types there are for all procedure inputs and
outputs. In this example, printmessage takes a string as input, and returns an
integer as output. Knowing this, you write a protocol specification like this in
RPC language that describes the remote version of printmessage:
/* msg.x: Remote message printing protocol */
program MESSAGEPROG
{
 version MESSAGEVERS
 {
 int PRINTMESSAGE(string) = 1;
 } = 1;
} = 99;

Remote procedures are part of remote programs, so an entire remote program is
actually declared here that contains the single procedure PRINTMESSAGE. This
procedure was declared to be in version 1 of the remote program. No null
procedure (procedure 0) is necessary because rpcgen generates it automatically.

In this example, the argument type is string and not char *. This is because a char
* in C is ambiguous. Programmers usually intend it to mean a null-terminated
string of characters, but it could also represent a pointer to a single character or a
pointer to an array of characters. In RPC language, a null-terminated string is
unambiguously called a string.

4–4 RPC/XDR Programmer’s Reference

Converting Local Procedures into Remote Procedures

The Remote Procedure

You next write the actual remote procedure. The following is the definition of a
remote procedure to implement the PRINTMESSAGE procedure previously
declared:
/* msg_proc.c: implementation of the remote procedure "printmessage" */
#include <stdio.h>
#include <rpc.h> /* always needed */
#include "msg.h" /* msg.h will be generated by rpcgen */

/* Remote version of "printmessage" */

int *
printmessage_1(msg)
 char **msg;{
 static int result; /* must be static! */
 FILE *f;
 f = fopen("/dev/console", "w");
 if (f == NULL)
 { result = 0;
 return (&result);
 } fprintf(f, "%s\n", *msg);
 fclose(f);
 result = 1;
 return (&result);
}

The declaration of the remote procedure printmessage_1 differs from that of the
local procedure printmessage in these ways:

■ It takes a pointer to a string instead of a string itself. This is true of all remote
procedures: they always take pointers to their arguments rather than the
arguments themselves.

■ It returns a pointer to an integer instead of an integer itself. This is also
generally true of remote procedures: they always return a pointer to their
results.

■ It has a _1 appended to its name. In general, all remote procedures called by
rpcgen are named by this rule: the name in the program definition (here
PRINTMESSAGE) is converted to all lower-case letters, an underscore (_) is
appended to it, and the version number (here 1) is appended.

Using rpcgen 4–5

Converting Local Procedures into Remote Procedures

Declare the Main Client Program

The last step is to declare the main client program that calls the remote
procedure. The following is an example:
/* rprintmsg.c: remote version of "printmsg.c" */
#include <stdio.h>
#include <rpc.h> /* always needed */
#include "msg.h" /* msg.h will be generated by rpcgen */

main(argc, argv)
 int argc;
 char *argv[];
{
 CLIENT *cl;
 int *result;
 char *server;
 char *message;

 if (argc != 3)
 {
 fprintf(stderr,
 "usage: %s host message\n", argv[0]);
 exit(1);
 }

 /* Save values of command line arguments */

 server = argv[1];
 message = argv[2];

 /* Create client "handle" used for calling MESSAGEPROG on the
 * server designated on the command line. We tell the RPC
 * package to use the "tcp" protocol when contacting
 * the server. */

 cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp");
 if (cl == NULL)
 {

 /* *Couldn't establish connection with server.
 * Print error message and die. */

 clnt_pcreateerror (server);
 exit(1);
 }
 /* Call the remote procedure "printmessage" on the server */

 result = printmessage_1(&message, cl);
 if (result == NULL)
 {
 /* An error occurred while calling the server.
 * Print error message and die. */

 clnt_perror (cl, server);
 exit(1);
 }

 /* Okay, we successfully called the remote procedure. */

 if (*result == 0)
 {

 /* Server was unable to print our message.
 * Print error message and die. */

4–6 RPC/XDR Programmer’s Reference

Converting Local Procedures into Remote Procedures

 fprintf(stderr, "%s: %s couldn't print your message\n",
 argv[0], server);
 exit(1);
 }

 /* The message got printed on the server's console */

 printf("Message delivered to %s!\n", server);
 exit(0);
}

The client handle (called handle in the example) used by rpcgen is created using
the RPC library routine clnt_create. This client handle is passed to the stub
routines that call the remote procedure.

The remote procedure printmessage_1 is called exactly the same way as it is
declared in msg_proc.c except for the inserted client handle as the first
argument.

Completing the Process

The following example shows how to complete the process:
example% rpcgen msg.x
example% cc rprintmsg.c msg_clnt.c -o rprintmsg
example% cc msg_proc.c msg_svc.c -o msg_server

Two programs were compiled:

■ The client program rprintmsg

■ The server program msg_server.

Before doing this, rpcgen was used to fill in the missing pieces.

rpcgen did the following with the input file msg.x:

■ It created a header file called msg.h that contained #defines for
MESSAGEPROG, MESSAGEVERS and PRINTMESSAGE for use in the other
modules.

■ It created client stub routines in the msg_clnt.c file. In this case, there is only
one, the printmessage_1 referred to from the printmsg client program. The
name of the output file for client stub routines is always formed in this way:
if the name of the input file is FOO.x, the client stubs output file is called
FOO_clnt.c.

■ It created the server program that calls printmessage_1 in msg_proc.c. This
server program is named msg_svc.c. The rule for naming the server output
file is similar to the previous one: for an input file called FOO.x, the output
server file is named FOO_svc.c.

Using rpcgen 4–7

Generating XDR Routines

You are now ready to test the example. First, copy the server to a remote
machine and run it. In this example, the machine is called moon.
moon% msg_server &

Server processes are run in the background, because they never exit. Then, on
the local machine sun, print a message on moon’s console.

sun% rprintmsg moon "Hello, moon."

The message gets printed to moon’s console. You can print a message on
anybody’s console (including your own) with this program if you are able to
copy the server to their machine and run it.

Generating XDR Routines
The previous example only demonstrated the automatic generation of client and
server RPC code. rpcgen may also be used to generate XDR routines, that is, the
routines necessary to convert local data structures into network format and vice-
versa.

This example presents a complete RPC service – a remote directory listing
service, which uses rpcgen not only to generate stub routines, but also to
generate the XDR routines.

Protocol Description File

The following is the protocol description file:
/* dir.x: Remote directory listing protocol */

const MAXNAMELEN = 255; /* maximum length of a directory entry */
typedef string nametype<MAXNAMELEN>; /* a directory entry */
typedef struct namenode *namelist; /* a link in the listing */

/* A node in the directory listing */

struct namenode
{
 nametype name /* name of directory entry */
 namelist next; /* next entry */
};
 /* The result of a READDIR operation. */
union readdir_res switch (int errno)
{
 case 0:
 namelist list; /* no error : return directory listing */
 default:
 void; /* error occurred: nothing else to return */
};

/* The directory program definition */

4–8 RPC/XDR Programmer’s Reference

Generating XDR Routines

program DIRPROG
{
 version DIRVERS
 {
 readdir_res
 READDIR(nametype) = 1;
 } = 1;
} = 76;

Types (like readdir_res in this example) can be defined using the struct, union,
and enum keywords, but those keywords should not be used in subsequent
declarations of variables of those types. For example, if you define a union foo,
you should declare using only foo and not union foo. rpcgen compiles RPC
unions into C structures and it is an error to declare them using the union
keyword.

XDR Routines for Converting Data Types

Running rpcgen on dir.x creates four output files. Three are the same as before:
header file, client stub routines, and server skeleton. The fourth file contains the
XDR routines necessary for converting the data types declared into XDR format
and vice-versa. These are output in the file dir_xdr.c.

The READDIR Procedure

The following is the implementation of the READDIR procedure:
/* dir_proc.c: remote readdir implementation */

#include <rpc.h>
#include <dir.h>
#include "dir.h"

extern int errno;
extern char *malloc();
extern char *strdup();

readdir_res *
readdir_1(dirname)
 nametype *dirname;
{
 DIR *dirp;
 struct direct *d;
 namelist nl;
 namelist *nlp;
 static readdir_res res; /* must be static! */

 /* Open directory */

 dirp = opendir(*dirname);
 if (dirp == NULL)
 {
 res.errno = errno;
 return (&res);

Using rpcgen 4–9

Generating XDR Routines

The Client-Side Program to Call the Server

The following is the client-side program to call the server:
/* rls.c: Remote directory listing client */
#include <stdio.h>
#include <rpc.h> /* always need this */
#include "dir.h" /* will be generated by rpcgen */

extern int errno;

main(argc, argv)
 int argc;
 char *argv[];
{
 CLIENT *cl;
 char *server;
 char *dir;
 readdir_res *result;
 namelist nl;

 if (argc != 3)
 {
 fprintf(stderr, "usage: %s host directory\n", argv[0]);
 exit(1);
 }

 /* Remember what our command line arguments refer to */

 server = argv[1];
 dir = argv[2];

 /* Create client "handle" used for calling MESSAGEPROG on the
 * server designated on the command line. We tell the RPC
 * package to use the "tcp" protocol when contacting
 * the server. */

 cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");
 if (cl == NULL)
 {

 /* Couldn't establish connection with server.
 * Print error message and die. */

 clnt_pcreateerror (server);
 exit(1);
 }

 /* Call the remote procedure readdir on the server */

 result = readdir_1(&dir, cl);
 if (result == NULL)
 {

 /* An error occurred while calling the server.
 * Print error message and die. */

 clnt_perror (cl, server);
 exit(1);
 }
 /* Okay, we successfully called the remote procedure. */

 if (result->errno != 0)
 {

4–10 RPC/XDR Programmer’s Reference

Generating XDR Routines

/* A remote system error occurred. Print error
 * message and die. */
 errno = result->errno;
 perror(dir);
 exit(1);
 }

 /* Successfully got a directory listing. Print it out. */

 for (nl = result->readdir_res_u.list;
 nl != NULL;
 nl = nl->next)
 {
 printf("%s\n", nl->name);
 }
 exit(0);
}

Compiling and Running

Compile everything, and then run the following routine:
sun% rpcgen dir.x
sun% cc rls.c dir_clnt.c dir_xdr.c -o rls
sun% cc dir_svc.c dir_proc.c dir_xdr.c -o dir_svc

sun% dir_svc &

moon% rls sun /usr/pub
.
.
.
ascii
eqnchar
greek
kbd
marg8
tabclr
tabs
tabs4
moon%

Using rpcgen 4–11

The C Preprocessor

Testing the Client and Server Procedures Together

A final note about rpcgen. The client program and the server procedure can be
tested together as a single program by simply linking them with each other
rather than with the client and server stubs. The procedure calls are executed as
ordinary local procedure calls and the program can be debugged with a local
debugger. When the program is working, the client program can be linked to the
client stub produced by rpcgen and the server procedures can be linked to the
server stub produced by rpcgen.

If you do this, you may want to comment out calls to RPC library routines, and
have client-side routines call server routines directly.

The C Preprocessor
The C preprocessor is run on all input files before they are compiled, so all the
preprocessor directives are legal within an .x file.

Symbols That May Be Defined

The following symbols may be defined, depending on which output file is being
generated:

Symbol Description

RPC_HDR For header-file output.

RPC_XDR For XDR routine output.

RPC_SVC For server-skeleton output.

RPC_CLNT For client stub output.

4–12 RPC/XDR Programmer’s Reference

rpcgen Programming Notes

rpcgen Preprocessing

rpcgen does some preprocessing of its own. Any line that begins with a percent
sign is passed directly into the output file without any interpretation of the line.
This example demonstrates the preprocessing features:
/* time.x: Remote time protocol */

program TIMEPROG
{
 version TIMEVERS
 {
 unsigned int TIMEGET(void) = 1;
 } = 1;
} = 44;
#ifdef RPC_SVC
%int *
%timeget_1()
%{
% static int thetime;
%
% thetime = time(0);
% return (&thetime);
%}
#endif

The % feature is not generally recommended, as there is no guarantee that the
compiler puts the output where you intended.

rpcgen Programming Notes
This section contains useful notes on rpcgen programming.

Timeout Changes

RPC sets a default timeout of 25 seconds for RPC calls when clnt_create is used.
This timeout may be changed using clnt_control.

Here is a small code fragment to demonstrate use of clnt_control:
struct timeval tv;
CLIENT *cl;

cl = clnt_create("somehost", SOMEPROG, SOMEVERS, "tcp");
if (cl == NULL)
{
 exit(1);
}
tv.tv_sec = 60; /* change timeout to 1 minute */
tv.tv_usec = 0;
clnt_control(cl, CLSET_TIMEOUT, &tv);

Using rpcgen 4–13

rpcgen Programming Notes

 Handling Broadcast on the Server Side

When a procedure is known to be called via broadcast RPC, the server should
reply only if it can provide some useful information to the client.

To prevent the server from replying, a remote procedure can return NULL as its
result, and the server code generated by rpcgen detects this and does not send
out a reply.

The following is an example of a procedure that replies only if it thinks it is an
NFS server:
void *
reply_if_nfsserver()
{
 char notnull; /* just here so we can use its address */

 if (access("/etc/exports", F_OK) < 0)
 {
 return (NULL); /* prevent RPC from replying */
 }

 /* Return non-null pointer so RPC will send out a reply */

 return ((void *)¬null);
}

For example, if the procedure returns type void *, if must return a non-null
pointer if wants RPC to reply for it.

4–14 RPC/XDR Programmer’s Reference

rpcgen Programming Notes

Other Information Passed to Server Procedures

Server procedures often want to know more about an RPC call than just its
arguments.

Getting authentication information is important to procedures that want to
implement some level of security.

This extra information is actually supplied to the server procedure as a second
argument.

The following is an example to demonstrate its use. Rewrite the previous
printmessage_1 procedure to only let root users print a message to the console:
int *
%
printmessage_1(msg, rq)
 char **msg;
 struct svc_req *rq;
{
 static in result; /* Must be static */
 FILE *f;
 struct suthunix_parms *aup;

 aup = (struct authunix_parms *)rq->rq_clntcred;
 if (aup->aup_uid != 0)
 {
 result = 0;
 return (&result);
 }
 .
 . Same code as before
 .
}

Using rpcgen 4–15

The RPC Language

The RPC Language
The RPC language is an extension of XDR language. The sole extension is the
addition of the program type. For a complete description of the XDR language
syntax, read the XDR Protocol specification, RFC 1014. For a description of the
RPC extensions to the XDR language, read RFC 1057.

The XDR language is very close to C; you know C, you know most of XDR. The
following topics describe the syntax of the RPC language, showing a few
examples, and showing how the various RPC and XDR type definitions get
compiled into C type definitions in the output header file.

Definitions

An RPC language file consists of a series of definitions:
definition-list:
 definition ";"
 definition ";" definition-list

It recognizes these types of definitions:
definition:
 enum-definition
 struct-definition
 union-definition
 typedef-definition
 const-definition
 program-definition

Structures

An XDR struct is declared almost exactly like its C counterpart:
struct-definition:

 "struct" struct-ident "{"

 declaration-list

 "}"

declaration-list:
 declaration ";"
 declaration ";" declaration-list

4–16 RPC/XDR Programmer’s Reference

The RPC Language

The following shows an XDR structure to a two-dimensional coordinate, and the
C structure that gets compiled into the output header file:
struct coord {
 int x;
 int y;
 };
becomes
struct coord {
 int x;
 int y;
 };
 typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end of
the output. This lets you use coord instead of struct coord when declaring items.

Unions

XDR unions are discriminated unions, and look quite different from C unions.
They are more analogous to Pascal variant records than they are to C unions:
union-definition:
 "union" union-ident "switch" "(" declaration ")" "{"
 case-list
 "}"

case-list:
 "case" value ":" declaration ";"
 "default" ":" declaration ";"
 "case" value ":" declaration ";" case-list

The following is an example of a type that might be returned as the result of a
read data operation. If there is no error, return a block of data. Otherwise, do not
return anything:
union read_result switch (int errno)
{
 case 0:
 opaque data[1024];
 default:
 void;
};

... gets compiled into this code:
struct read_result
{
 int errno;
 union
 {
 char data[1024];
 } read_result_u;
};
typedef struct read_result read_result;

The union component of the output struct has the same name as the type, except
for the trailing _u.

Using rpcgen 4–17

The RPC Language

Enumerations

XDR enumerations have the same syntax as C enumerations:
enum-definition:
 "enum" enum-ident "{"
 enum-value-list
 "}"

enum-value-list:
 enum-value
 enum-value "," enum-value-list

enum-value:
 enum-value-ident
 enum-value-ident "=" value

The following a short example of an XDR enum, and the C enum that it gets compiled
into:
enum colortype {
 RED = 0,
 GREEN = 1,
 BLUE = 2
 };
...gets compiled into:
enum colortype {
 RED = 0,
 GREEN = 1,
 BLUE = 2
 };
typedef enum colortype colortype;

Typedefs

XDR typedefs have the same syntax as C typedefs:
typedef-definition:
 "typedef" declaration

The following is an example that defines a fname_type used for declaring file
name strings that have a maximum length of 255 characters:
typedef string fname_type<255>;

becomes
typedef char *fname_type;

4–18 RPC/XDR Programmer’s Reference

The RPC Language

Constants

XDR contains symbolic constants that may be used wherever an integer constant
is used; for example, in array size specifications:
const-definition:
 "const" const-ident "=" integer

The following example shows how to define the constant DOZEN equal to 12:
const DOZEN = 12;

becomes
#define DOZEN 12

Programs

RPC programs are declared using the following syntax:

program-definition:
 "program" program-ident "{"
 version-list
 "}" "=" value
version-list:
 version ";"
 version ";" version-list

version:
 "version" version-ident "{"
 procedure-list
 "}" "=" value

procedure-list:
 procedure ";"
 procedure ";" procedure-list

procedure:
 type-ident procedure-ident "(" type-ident ")" "=" value

Here is the time protocol, revisited:
/* time.x: Get or set the time. Time is represented
* as number of seconds since 0:00, January 1, 1970. */

program TIMEPROG
{
 version TIMEVERS
 {
 unsigned int TIMEGET(void) = 1;
 void TIMESET(unsigned) = 2;
 } = 1;
} = 44;

This file compiles into #defines in the output header file:
#define TIMEPROG 44
#define TIMEVERS 1
#define TIMEGET 1
#define TIMESET 2

Using rpcgen 4–19

The RPC Language

Declarations

XDR supports the following types of declarations:

■ Simple-declaration

■ Fixed-array-declaration

■ Variable-array-declaration

■ Pointer-declaration

Simple Declarations

These are just like simple C declarations:
simple-declaration:
 type-ident variable-ident

For example,
colortype color;

becomes
colortype color;

Fixed-length Array Declarations

These are just like C array declarations:
fixed-array-declaration:
 type-ident variable-ident "[" value "]"

For example,
colortype palette[8];

becomes
colortype palette[8];

4–20 RPC/XDR Programmer’s Reference

The RPC Language

Variable-Length Array Declarations

Variable-Length array declarations have no explicit syntax in C. The XDR format
uses angle brackets:
variable-array-declaration:
 type-ident variable-ident "<" value ">"
 type-ident variable-ident "<" ">"

The maximum size is specified between the angle brackets. The size may be
omitted, which indicates that the array may be of any size:
int heights<12>; /* at most 12 items */
int widths<>; /* any number of items */

Since variable-length arrays have no explicit syntax in C, these declarations are
actually compiled into structs.

For example, the heights declaration gets compiled into the following struct:
struct
{
 u_int heights_len; /* # of items in array */
 int *heights_val; /* pointer to array */
 } heights;

The number of items in the array is stored in the _len component and the pointer
to the array is stored in the _val component. The first part of each component
name is the same as the name of the declared XDR variable.

Pointer Declarations

Pointer declarations are made in XDR exactly as they are in C. You cannot send
pointers over the network, but you can use XDR pointers for sending recursive
data types such as lists and trees. The type is actually called “optional-data” in
XDR language, not “pointer”:
pointer-declaration:
 type-ident "*" variable-ident

For example,
listitem *next; --> listitem *next;

Using rpcgen 4–21

The RPC Language

Special Cases

There are a few exceptions to the previously described rules.

Booleans

C has no built-in boolean type. However, the RPC library does have a boolean
type called bool_t that is either TRUE or FALSE. Things declared as type bool in
XDR language are compiled into bool_t in the output header file.
bool married;

becomes
bool_t married;

Strings

C has no built-in string type, but instead uses the null-terminated char *
convention. In XDR language, strings are declared using the string keyword and
compiled into char *s in the output header file. The maximum size contained in
the angle brackets specifies the maximum number of characters allowed in the
strings (not counting the NULL character). The maximum size may be left off,
which indicates a string of arbitrary length.

The following are two examples:
string name<32>;

becomes
char *name;

The second example:
string longname<>;

becomes
char *longname;

4–22 RPC/XDR Programmer’s Reference

The RPC Language

Opaque Data

Opaque data is used in RPC and XDR to describe untyped data, that is, just
sequences of arbitrary bytes. It may be declared either as a fixed or variable
length array.

The following are two examples:
opaque diskblock[512];

becomes
char diskblock[512];

The second example is:
opaque filedata<1024>;

becomes

struct
{
 u_int filedata_len;
 char *filedata_val;
} filedata;

Voids

In a void declaration, the variable is not named. The declaration is just void and
nothing else. Void declarations can only occur in two places: union definitions
and program definitions as the argument or result of a remote procedure.

Using rpcgen 4–23

Appendix

A RPC Manual Pages

This appendix lists the RPC library calls in UNIX-style manual page format.

RPC Library Functions
The RPC library calls are listed in alphabetical order in this chapter.

Following a brief introductory statement summarizing its use, each function is
described using the documentation style of UNIX.

The following table lists the basic components of each function and its
description:

Function Description

Synopsis A synopsis of the function is given in C language format. The
function prototype statement is listed showing all function
arguments.

Description A description of the function is given, including any special rules
for specifying arguments, alternative uses of the function, and any
results returned.

Parameters Each parameter for the call is described.

Files Any required include files are listed in this section.

See Also References to related functions are given.

RPC Manual Pages A–1

auth_destroy()

auth_destroy()
Destroy authentication information.

Synopsis void auth_destroy(auth)
AUTH *auth;

Description
auth_destroy() is a macro that destroys the authentication information
associated with auth. Destruction usually involves deallocation of private data
structures. The use of auth is undefined after calling auth_destroy(). This
routine is called indirectly based on the pointer to the routine passed in the
struct AUTH. This routine may also be called using the upper-case
AUTH_DESTROY().

Parameters
auth RPC authentication handle.

Files rpc.h - RPC include file.

See Also authnone_create(), authunix_create(), authunix_create_default().

authnone_create()
Create RPC authentication handle.

Synopsis AUTH *authnone_create().

Description authnone_create() creates and returns an RPC authentication handle that passes
nonusable authentication information with each remote procedure call. This is
the default used by RPC.

Files rpc.h - RPC include file.

See Also auth_destroy(), authunix_create(), authunix_create_default().

A–2 RPC/XDR Programmer's Reference

authunix_create()

authunix_create()
Create RPC authentication handle.

Synopsis AUTH *authunix_create(host, uid, gid, len, aup_gids)
char *host;
int uid, gid, len, *aup_gids;

Description
authunix_create() creates and returns an RPC authentication handle that contains
authentication information. It is easy to impersonate a user.

Parameters
host The name of the machine on which the information was created.

uid The user’s user ID.

gid The user’s current group ID.

l en Refers to a counted array of groups to which the user belongs.

Files rpc.h - RPC include file.

See Also auth_destroy(), authnone_create(), authunix_create_default().

authunix_create_default()
Call authunix with default parameters.

Synopsis AUTH *authunix_create_default()

Description authunix_create_default() calls authunix_create() with the appropriate
parameters.

Files rpc.h - RPC include file.

See Also auth_destroy(), authnone_create(), authunix_create()

RPC Manual Pages A–3

callrpc()

callrpc()
Call remote procedure.

Synopsis

int callrpc(host, prognum, versnum, procnum, inproc, in,
 outproc, out)
char *host;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;

Description callrpc() calls the remote procedure associated with program number, version
number, and remote procedure on the machine host. This routine returns zero
if it succeeds, or the value of enum clnt_stat cast to an integer if it fails. The
routine clnt_perrno() is handy for translating failure statuses into messages.

Calling remote procedures with this routine uses UDP/IP as a transport; see
clntudp_create() for restrictions. You do not have control of time-outs or
authentication using this routine.

Parameters host Machine name.

prognum Program number.

versnum Version number.

procnum Remote procedure.

inproc XDR routine used to encode the procedure’s parameters.

in The address of the procedure’s arguments.

outproc XDR routine used to decode the procedure’s results.

out Address at which to place the result(s).

Files rpc.h - RPC include file.

See Also clnt_stat(), clnt_perrno(), clnttcp_create(), clntudp; create().

A–4 RPC/XDR Programmer's Reference

clnt_broadcast()

clnt_broadcast()
Broadcast RPC call message.

Note: This routine exists but it currently returns failure (-1).

Synopsis

enum clnt_stat clnt_broadcast(prognum, versnum, procnum,
 inproc, in, outproc, out, eachresult)
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
resultproc_t eachresult;

Description
clnt_broadcast() is like callrpc(), except the call message is broadcast to all
locally connected broadcast nets.

Each time it receives a response, this routine calls eachresult(), whose form is:

eachresult(out, addr)
char *out;
struct sockaddr_in *addr;

out The same as out passed to clnt_broadcast(), except that the
remote procedure’s output is decoded there.

addr Points to the address of the machine that sent the results.

If eachresult() returns zero, clnt_broadcast() waits for more replies; otherwise it
returns with appropriate status.
Note that broadcast sockets are limited in size to the maximum transfer unit of
the data link. For ethernet, this value is 1500 bytes.

Parameters prognum Program number.

versnum Version number.

procnum Remote procedure.

inproc XDR routine used to encode the procedure’s parameters.

in The address of the procedure’s arguments.

outproc XDR routine used to decode the procedure’s results.

out The address of where to place the result(s).

e achresult Routine called on response receipt (see above).

Files
rpc.h - RPC include file.

pmapclnt.h - Portmapper include file.
See Also

callrpc()

RPC Manual Pages A–5

clnt_call()

clnt_call()
Call remote procedure.

Synopsis enum clnt_stat clnt_call(clnt, procnum, inproc, in, outproc,
 out, timeout)
CLIENT *clnt;
ulong procnum;
xdrproc_t inproc, outproc;
char *in, *out;
struct timeval timeout;

Description
clnt_call() is a macro that calls the remote procedure procnum associated with
the client handle clnt which is obtained with an RPC client creation routine such
as clnt_create(). This routine is called indirectly based on the pointer to the
routine passed in the struct CLIENT. This call may also be called using the
upper-case CLNT_CALL().

Parameters clnt Client handle.

procnum Remote procedure.

inproc XDR routine used to encode the procedure’s parameters.

in The address of the procedure’s argument(s).

outproc XDR routine used to decode the procedure’s results.

out Address of where to place the result(s).

t imeout Time allowed for results to come back.

Files
rpc.h - RPC include file.

See Also
clnt_stat(), clnt_perrno(), clnttcp_create(), clntudp_create()

A–6 RPC/XDR Programmer's Reference

clnt_control()

clnt_control()
Change or receive information about client object.

Synopsis bool_t clnt_control(cl, req, info)
CLIENT *cl;
int req;
char *info

Description clnt_control() is a macro used to change or retrieve various information about a
client object. req indicates the type of operation, and info is a pointer to the
information. For both UDP and TCP, the supported values of req and their
argument types and what they do are:

CLSET_TIMEOUT struct timeval set total timeout
CLGET_TIMEOUT struct timeval get total timeout
Note: If you set the timeout using clnt_control() the timeout parameter passed to
clnt_call() will be ignored in all future calls.

CLGET_SERVER_ADDR struct sockaddr get server’s address

The following operations are valid for UDP only:

CLSET_RETRY_TIMEOUT struct timeval set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval get the retry timeout

The retry timeout is the time that UDP RPC waits for the server to reply before
retransmitting the request.

This routine is called indirectly based on the pointer to the routine passed in the
struct CLIENT. This call may also be called using the upper-case
CLNT_CONTROL().
This routine returns TRUE on success and FALSE on failure.

Parameters
cl Client.

req Indicates the type of operation.

i nfo A pointer to the information.

Files rpc.h - RPC include file.

See Also clnt_call()

RPC Manual Pages A–7

clnt_create()

clnt_create()
Client creation routine.

Synopsis CLIENT *clnt_create(host, prognum, versnum, proto)
char *host;
u_long prognum, versnum;
char *proto;

Description clnt_create() is a generic client creation routine. Default time-outs are set, but
can be modified using clnt_control().

Using UDP has its shortcomings. Since UDP-based RPC messages can only
hold up to eight KB of encoded data, this transport cannot be used for
procedures that take large arguments or return huge results.

Parameters
host Identifies the name of the remote host where the server is

located.

prognum Remote program number.

versnum Remote version number.

proto Indicates which kind of transport protocol to use. The currently
supported values for this field are udp and tcp.

Files rpc.h - RPC include file.

See Also clnt_control(), clnt_destroy(), clnttcp_create(), clntudp_create()

clnt_destroy()
Destroy client’s RPC handle.

Synopsis void clnt_destroy(clnt)
CLIENT *clnt;

Description clnt_destroy() is a macro that destroys the client’s RPC handle. Destruction
usually involves deallocation of private data structures, including clnt itself.
Use of clnt is undefined after calling clnt_destroy(). If the RPC library opened
the associated socket, it will close it also. Otherwise, the socket remains open.
This routine is called indirectly based on the pointer to the routine passed in the
struct CLIENT. This call may also be called using the upper-case
CLNT_DESTROY().

Parameters
c lnt Client handle.

Files rpc.h - RPC include file.

A–8 RPC/XDR Programmer's Reference

clnt_freeres()

See Also clnt_stat(), clnt_perrno(), clntudp_create()

clnt_freeres()
Free data allocated by result decoding.

Synopsis bool_t clnt_freeres(clnt, outproc, out)
CLIENT *clnt;
xdrproc_t outproc;
char *out;

Description clnt_freeres() is a macro that frees any data allocated by the RPC/XDR system
when it decoded the results of an RPC call. This routine returns TRUE if the
results were successfully freed, and FALSE otherwise. This routine is called
indirectly based on the pointer to the routine passed in the struct CLIENT. This
routine may also be called using the upper-case CLNT_FREERES().

Parameters clnt Client.

outproc XDR routine describing the results.

out Address of the results.

Files rpc. h - RPC include file.

See Also clnt_call()

clnt_geterr()
Get error structure.

Synopsis void clnt_geterr(clnt, errp)
CLIENT *clnt;
struct rpc_err *errp;

Description clnt_geterr() is a macro that copies the error structure out of the client handle to
the structure at address errp. This routine is called indirectly based on the
pointer to the routine passed in the struct CLIENT. This routine may also be
called using the upper-case CLNT_GETERR().

Parameters clnt Client.

errp Address of the error structure.

Files rpc.h - RPC include file.

See Also clnt_call(), clnt_call()

RPC Manual Pages A–9

clnt_pcreateerror()

clnt_pcreateerror()
Print error about client creation.

Synopsis void clnt_pcreateerror(str)
char *str;

Description clnt_pcreateerror() prints a message via the rpclog() facility indicating why a
client RPC handle could not be created. The message is prepended with string
str and a colon. Used when a clnt_create(), clntraw_create(), clnttcp_create(), or
clntudp_create() call fails.

Parameters str string to prepend

Files rpc.h - RPC include file.

See Also clnt_create(), clntraw_create(), clnttcp_create(), clntudp_create(), and
clnt_spcreateerror()

clnt_perrno()
Print standard error.

Synopsis void clnt_perrno(stat)
enum clnt_stat stat;

Description clnt_perrno() prints via the rpclog() facility, a standard error corresponding to
the condition indicated by stat. Used after callrpc().

Parameters
s tat Error indication.

Files rpc.h - RPC include file.

See Also callrpc(), clnt_call(), clnt_perror(), clnt_sperror(), and clnt_sperror()

A–10 RPC/XDR Programmer's Reference

clnt_perror()

clnt_perror()
Print message for why RPC call failed.

Synopsis void clnt_perror(clnt, str)
CLIENT *clnt;
char *str;

Description clnt_perror() prints a message via the rpclog() facility indicating why an RPC
call failed. The message is prepended with string str and a colon. Used after
clnt_call() or callrpc().

Parameters clnt Handle used to do the call.

str String prepended to message.

Files rpc.h - RPC include file.

See Also clnt_call(), callrpc(), clnt_perrno(), clnt_sperrno(), and clnt_sperror()

clnt_specreaterror()
Returns a string for why RPC handle could not be created.

Synopsis char *clnt_spcreateerror(str)
char *str;

Description clnt_spcreateerror() returns a string indicating why a client RPC handle could
not be created. clnt_spcreateerror() is like clnt_pcreateerror(), except that it
returns a string instead of using the rpclog() facility.

Note: Returns pointer to static data that is overwritten on each call.

Parameters str String to prepend to message.

Files rpc.h - RPC include file.

See Also clnt_pcreateerror()

RPC Manual Pages A–11

clnt_sperrno()

clnt_sperrno()
Returns a string for why an RPC call failed.

Synopsis char *clnt_sperrno(stat)
enum clnt_stat stat;

Description clnt_sperrno() takes the same arguments as clnt_perrno(), but instead of
sending a message to the rpclog() facility indicating why an RPC call failed,
returns a pointer to a string which contains the message. The string ends with a
newline.

clnt_sperrno() is used instead of clnt_perrno() if the program does not want to
use the rpclog() facility, or if a message format different than that supported by
clnt_perrno() is to be used.

Note: Unlike clnt_sperror() and clnt_spcreateerror(), clnt_sperrno() does not
return a pointer to static data, so the result will not get overwritten on each call.

Parameters stat Error condition.

Files rpc.h - RPC include file.

See Also clnt_perrno(), clnt_sperror(), and clnt_spcreateerror()

clnt_sperror()
Returns a string for why an RPC call failed.

Synopsis char *clnt_sperrno(rpch, str)
CLIENT *rpch;
char *str;

Description clnt_sperror()is like clnt_perror(), except that, like clnt_sperrno(), it returns a
string instead of using the rpclog() facility.

Note: Returns a pointer to static data that is overwritten on each call.

Parameters rpch Handle.

s tr String.

Files rpc.h - RPC include file.

See Also clnt_perrno(), and clnt_perror()

A–12 RPC/XDR Programmer's Reference

clntraw_create()

clntraw_create()
Creates an RPC client.

Synopsis CLIENT *clntraw_create(prognum, versnum)
u_long prognum, versnum;

Description clntraw_create() creates an RPC client for the remote program prognum,
version versnum. The transport used to pass messages to the service is actually
a buffer within the task’s address space, so the corresponding RPC server
should live in the same address space; see svcraw_create(). This allows
simulation of RPC and acquisition of RPC overheads, such as round trip times,
without any network interference. This routine returns NULL if it fails.

Parameters prognum Remote program.

v ersnum Version.

Files rpc.h - RPC include file.

See Also svcraw_create()

RPC Manual Pages A–13

clnttcp_create()

clnttcp_create()
Creates an RPC client that uses TCP.

Synopsis CLIENT *clnttcp_create(addr, prognum, versnum, sockp,
 sendsz, recvsz)
struct sockaddr_in *addr;
u_long prognum, versnum;
int *sockp;
u_int sendsz, recvsz;

Description clnttcp_create() creates an RPC client for the remote program prognum, version
versnum; the client uses TCP/IP as a transport. The remote program is located
at Internet address *addr. If addr->sin_port is zero, then it is set to the actual
port that the remote program is listening on (the remote portmap service is
consulted for this information). The parameter sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets sockp. Since TCP-
based RPC uses buffered I/O, the user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz; values of zero choose
suitable defaults. This routine returns NULL if it fails.

Parameters addr Internet address.

prognum Remote program.

versnum Version.

sockp Pointer to a socket.

sendsz Size of send buffer.

r ecvsz Size of receive buffer.

Files rpc.h - RPC include file.

See Also clntudp_create()

A–14 RPC/XDR Programmer's Reference

clntudp_create()

clntudp_create()
Creates an RPC client which uses TCP.

Synopsis CLIENT *clntudp_create(addr, prognum, versnum, wait, sockp)
struct sockaddr_in *addr;
u_long prognum, versnum;
struct timeval wait;
int *sockp;

Description clntudp_create() creates an RPC client for the remote program prognum,
version versnum; the client uses UDP/IP as a transport. The remote program is
located at Internet address *addr. If addr->sin_port is zero, then it is set to the
actual port that the remote program is listening on (the remote portmap service
is consulted for this information). The parameter sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets sockp. The UDP
transport resends the call message in intervals of wait time until a response is
received or until the call times out. The total time for the call to time out is
specified by clnt_call().

Since UDP-based RPC messages can only hold up to 8K of encoded data, this
transport cannot be used for procedures that take large arguments or return
huge results.

Parameters addr Internet address.

prognum Remote program.

versnum Version.

wait Time interval to resend message.

s ockp Socket pointer.

Files rpc.h - RPC include file.

See Also clnttcp_create()

RPC Manual Pages A–15

get_myaddress()

get_myaddress()
Get machine’s IP address.

Synopsis void get_myaddress(addr)
struct sockaddr_in *addr;

Description get_myaddress() returns the machine’s IP address in *addr, without consulting
the library routines that deal with /etc/hosts. The port number is always set to
htons(PMAPPORT).

Parameters a ddr Internet address.

Files rpc. h - RPC include file.

See Also htons()

getrpcbyname()
Get RPC entry by name.

Synopsis struct rpcent *getrpcbyname(name)
char *name;

Description getrpcbyname() returns a pointer to an object with the following structure
containing the information returned by the Domain Name Resolver (DNR).

structrpcent{
 char *r_name; /* name of server for this rpc program */
 char **r_aliases; /* alias list */
 long r_number; /* rpc program number */
};

r_name Name of the server for this RPC program.

r_aliases Zero terminated list of alternate names for the RPC program.

r_number RPC program number for this service.

getrpcbyname() queries DNR with a DFRPCBYN request.

Parameters n ame Name of server.

Files rpc.h - RPC include file.

See Also getrpcbynumber()

A–16 RPC/XDR Programmer's Reference

getrpcbynumber()

getrpcbynumber()
Get RPC entry by number.

Synopsis struct rpcent *getrpcbynumber(number)
int number;

Description getrpcbynumber() queries the Domain Name Resolver (DNR) and returns a
pointer to an object with the following structure:

structrpcent{
 char *r_name; /* name of server for this rpc program */
 char **r_aliases; /* alias list */
 long r_number; /* rpc program number */
 };

r_name Name of the server for this RPC program.

r_aliases A zero terminated list of alternate names for the RPC program.

r_number RPC program number for this service.

getrpcbynumber() queries DNR with a DFRPCBYV request.

Parameters n umber RPC program number.

Files rpc.h - RPC include file.

See Also getrpcbyname()

RPC Manual Pages A–17

mvs_svc_run()

mvs_svc_run()
Call the appropriate service routine for RPC requests.

Synopsis int mvs_svc_run(ecblistp, ecbcount)
unsigned long **ecblistp;
int ecbcount;

Description mvs_svc_run() waits for RPC requests to arrive, and calls the appropriate
service procedure using svc_getreq() when one arrives. mvs_svc_run() is
similar to svc_run() but can wait on an ECB list in addition to the socket wait.
This call returns if any ECB is posted. This procedure is usually waiting for a
select() system call to return. mvs_svc_run() also returns if the API shuts down
or encounters a system error.

Parameters ecblistp Pointer to ECB list.

e cbcount ECB count to wait on.

Files rpc.h - RPC include file.

See Also svc_run()

pmap_getmaps()
Get list of port mappings.

Synopsis struct pmaplist *pmap_getmaps(addr)
struct sockaddr_in *addr;

Description pmap_getmaps() is a user interface to the portmap service, which returns a list
of the current RPC program-to-port mappings on the host located at IP address
*addr. This routine can return NULL. The rpcinfo utility uses this routine.

Parameters a ddr Internet address.

Files rpc.h - RPC include file.

pmapclnt.h - Portmapper include file.

See Also pmap_getport(), pmap_set(), pmap_unset()

A–18 RPC/XDR Programmer's Reference

pmap_getport()

pmap_getport()
Get port number for a service.

Synopsis u_short pmap_getport(addr, prognum, versnum, protocol)
struct sockaddr_in *addr;
u_long prognum, versnum, protocol;

Description pmap_getmaps() is a user interface to the portmap service, which returns the
port number on which a service waits that supports program number
prognum, version versnum, and speaks the transport protocol associated with
protocol. The value of protocol is most likely IPPROTO_UDP or
IPPROTO_TCP. A return value of zero means that the mapping does not exist
or that the RPC system failed to contact the remote portmap service. In the
latter case, the global variable rpc_createerr() contains the RPC status.

Parameters addr Internet address.

prognum Remote program number.

versnum Version number.

p rotocol Transport protocol.

Files rpc.h - RPC include file.

pmapclnt.h - Portmapper include file.

See Also pmap_getmaps(), pmap_set(), pmap_unset()

RPC Manual Pages A–19

pmap_rmtcall()

pmap_rmtcall()
Tell portmapper to make an RPC call.

Synopsis enum clnt_stat pmap_rmtcall(addr, prognum, versnum, procnum,
 inproc, in, outproc, out, timeout, portp)
struct sockaddr_in *addr;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
struct timeval timeout;
u_long *portp;

Description pmap_rmtcall() is a user interface to the portmap service, which instructs
portmap on the host at IP address *addr to make an RPC call on your behalf to
a procedure on that host. The parameter *portp will be modified to the
program’s port number if the procedure succeeds. The definitions of other
parameters are discussed in callrpc() and clnt_call(). This procedure should be
used for a ping and nothing else. See also clnt_broadcast().

Parameters addr Internet address.

prognum Remote program number.

versnum Version number.

procnum Procedure number.

inproc XDR procedure used to encode the procedure’s parameters.

in The address of the procedure’s arguments.

outproc XDR procedure used to decode the procedure’s results.

out Address of where to place the result(s).

timeout Time allowed for results to come back.

p ortp Pointer to program’s port number.

Files rpc.h - RPC include file.

pmapclnt.h - Portmapper include file.

See Also pmap_getmaps(), pmap_getport(), pmap_set(), pmap_unset()

A–20 RPC/XDR Programmer's Reference

pmap_set()

pmap_set()
Set portmapping.

Synopsis bool_t pmap_set(prognum, versnum, protocol, port)
u_long prognum, versnum, protocol;
u_long port;

Description pmap_set() is a user interface to the portmap service, which establishes a
mapping between the triple (prognum, versnum, protocol) and port on the
machine’s portmap service. The value of protocol is most likely IPPROTO_UDP
or IPPROTO_TCP. This routine returns TRUE if it succeeds, FALSE otherwise.
It is automatically done by svc_register().

Parameters prognum Program number.

versnum Version number.

protocol Transport protocol.

p ort Program’s port number.

Files rpc.h - RPC include file.

pmapclnt.h - Portmapper include file.

See Also pmap_getmaps(), pmap_getport(), pmap_unset()

RPC Manual Pages A–21

pmap_unset()

pmap_unset()
Unset portmapping.

Synopsis bool_t pmap_unset(prognum, versnum)
u_long prognum, versnum;

Description pmap_unset() is a user interface to the portmap service, which destroys all
mapping between the triple (prognum, versnum,*) and ports on the machine’s
portmap service. This routine returns TRUE if it succeeds, FALSE otherwise.

Parameters prognum Program number.

v ersnum Version number.

Files rpc.h - RPC include file.

pmapclnt.h - Portmapper include file.

See Also pmap_getmaps(), pmap_getport(), pmap_set()

A–22 RPC/XDR Programmer's Reference

registerrpc()

registerrpc()
Register a procedure with RPC.

Synopsis int registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum, versnum, procnum;
char *(*procname)();
xdrproc_t inproc, outproc;

Description registerrpc() registers procedure procname with the RPC service package. If a
request arrives for program prognum, version versnum, and procedure
procnum, procname is called with a pointer to its parameter(s); procname
should return a pointer to its static result(s); inproc is used to decode the
parameters; outproc is used to encode the results. This routine returns zero if
the registration succeeded, -1 otherwise.

Remote procedures registered in this form are accessed using the UDP/IP
transport; see svcudp_create() for restrictions.

Parameters prognum Program number.

versum Version number.

procnum Procedure number.

procname Procedure name

inproc XDR procedure used to decode the procedure’s parameters.

o utproc XDR procedure used to encode the procedure’s results.

Files rpc.h - RPC include file.

See Also svcudp_create()

RPC Manual Pages A–23

rpc_createerr

rpc_createerr
Global variable for unsuccessful client creation.

Synopsis struct rpc_createerr rpc_createerr

Description rpc_createerr is a global variable whose value is set by any RPC client creation
routine that does not succeed. Use the routine clnt_pcreateerror() to print the
reason why.

Files rpc.h - RPC include file.

See Also clnt_pcreateerror()

svc_destroy()
Destroy RPC transport handle.

Synopsis void svc_destroy(xprt)
SVCXPRT *xprt;

Description
svc_destroy() is a macro that destroys the RPC service transport handle, xprt.
Destruction usually involves deallocation of private data structures, including
xprt itself. Use of xprt is undefined after calling this routine. This routine is
called indirectly based on the pointer to the routine passed in the struct
SVCXPRT. This routine may also be called using the upper-case
SVC_DESTROY().

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getargs(), svc_getcaller(), svc_getreqset(), svc_getreq(),
svc_register(),svc_run(), svc_sendreply() svc_unregister(), svcudp_create(),
svctcp_create()

A–24 RPC/XDR Programmer's Reference

svc_fdset

svc_fdset
Global variable for RPC’s file descriptor bit mask.

Synopsis fd_set svc_fdset;

Description svc_fdset is a global variable reflecting the RPC service side’s read file
descriptor bit mask. It is suitable as a parameter to the select system call. This is
only of interest if a service implementor does not call svc_run(), but rather does
his own asynchronous event processing. This variable may change after calls to
svc_getreqset() or any creation routines.

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getargs(), svc_getcaller(), svc_getreqset(), svc_getreq(),
svc_register(),svc_run(), svc_sendreply() svc_unregister(), svctcp_create(),
svcudp_create()

svc_freeargs()
Free data allocated by svc_getargs argument decoding.

Synopsis bool_t svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Description svc_freeargs() is a macro that frees any data allocated by the RPC/XDR system
when it decoded the arguments to a service procedure using svc_getargs(). This
routine returns TRUE if the results were successfully freed, and FALSE
otherwise. This routine is called indirectly based on the pointer to the routine
passed in the struct SVCXPRT. This routine may also be called with the upper-
case SVC_FREEARGS().

Parameters xprt RPC service transport handle.

inproc Used to encode the procedure’s parameters.

i n Address of the procedure’s arguments.

Files rpc.h - RPC include file.

See Also svc_getargs(), svc_getcaller(), svc_getreqset(), svc_getreq(),
svc_register(),svc_run(), svc_sendreply() svc_unregister()

RPC Manual Pages A–25

svc_getargs()

svc_getargs()
Decode RPC request arguments.

Synopsis bool_t svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Description svc_getargs() is a macro that decodes the arguments of an RPC request
associated with the RPC service transport handle, xprt. The parameter in is the
address where the arguments will be placed; inproc is the XDR routine used to
decode the arguments. This routine returns TRUE if decoding succeeds, and
FALSE otherwise. This routine is called indirectly based on the pointer to the
routine passed in the struct SVCXPRT. This routine may also be called with the
upper-case SVC_GETARGS().

Parameters xprt RPC service transport handle.

inproc Used to encode the procedure’s parameters.

i n Address of the procedure’s arguments.

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getcaller(), svc_getreqset(), svc_getreq(),
svc_register(),svc_run(), svc_sendreply() svc_unregister()

svc_getcaller()
Get network address of caller.

Synopsis struct sockaddr_in *svc_getcaller(xprt)
SVCXPRT *xprt;

Description svc_getcaller() is the approved way of getting the network address of the caller
of a procedure associated with the RPC service transport handle, xprt.

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getargs(), svc_getreqset(), svc_getreq(),
svc_register(),svc_run(), svc_sendreply() svc_unregister()

A–26 RPC/XDR Programmer's Reference

svc_getreq()

svc_getreq()
Service an RPC request on a socket.

Synopsis svc_getreq(rdfds)
int rdfds;

Description svc_getreq() is similar to svc_getreqset(). This interface is obsoleted by
svc_getreqset().

Parameters r dfds Read file descriptor bit mask.

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getargs(), svc_getcaller(), svc_getreqset(),
svc_register(),svc_run(), svc_sendreply() svc_unregister()

svc_getreqset()
Service an RPC request that arrived on a socket.

Synopsis svc_getreqset(rdfds)
fd_set *rdfds;

Description svc_getreqset() is only of interest if a service implementor does not call
svc_run(), but instead implements custom asynchronous event processing. It is
called when the select() system call has determined that an RPC request has
arrived on some RPC socket(s); rdfds is the resultant read file descriptor bit
mask. The routine returns when all sockets associated with the value of rdfds
have been serviced.

Parameters r dfds Read file descriptor bit mask.

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getargs(), svc_getcaller(), svc_getreq(), svc_register(),
svc_run(), svc_sendreply(), svc_unregister()

RPC Manual Pages A–27

svc_register()

svc_register()
Register procedure with service dispatch procedure.

Synopsis bool_t svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum, versnum;
void (*dispatch) ();
u_long protocol;

Description svc_register() associates prognum and versnum with the service dispatch
procedure, dispatch. If protocol is zero, the service is not registered with the
portmap service. If protocol is non-zero, then a mapping of the triple [prognum,
versnum, protocol] to xprt->xp_port is established with the local portmap
service (generally protocol is zero, IPPROTO_UDP or IPPROTO_TCP). The
procedure dispatch has the following form:

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

The svc_register() routine returns TRUE if it succeeds, and FALSE otherwise.

Parameters xprt RPC service transport handle.

prognum Program number.

versnum Version number.

dispatch Service dispatch procedure.

p rotocol Transport protocol.

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getargs(), svc_getcaller(), svc_getreqset(), svc_getreq(),
svc_run(), svc_sendreply() svc_unregister()

A–28 RPC/XDR Programmer's Reference

svc_run()

svc_run()
Call the appropriate service routine for RPC requests.

Synopsis void svc_run()

Description svc_run() waits for RPC requests to arrive, and calls the appropriate service
procedure using svc_getreq() when one arrives. This procedure is usually
waiting for a select() system call to return. svc_run() does not return unless the
API shuts down or encounters a system error.

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getargs(), svc_getcaller(), svc_getreqset(), svc_getreq(),
svc_register(), svc_sendreply() svc_unregister()

svc_sendreply()
Send results of remote procedure call.

Synopsis bool_t svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_ t outproc;
char *out;

Description svc_sendreply() is called by an RPC service’s routine to send the results of a
remote procedure call. The parameter xprt is the request’s associated transport
handle; outproc is the XDR routine which is used to encode the results; and out
is the address of the results. This routine returns TRUE if it succeeds, FALSE
otherwise.

Parameters xprt RPC service transport handle.

outproc XDR routine used to decode the procedure’s results.

o ut Address of where to place the result(s).

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getargs(), svc_getcaller(), svc_getreqset(), svc_getreq(),
svc_register(), svc_sendreply() svc_unregister()

RPC Manual Pages A–29

svc_unregister()

svc_unregister()
Remove mapping to dispatch routines.

Synopsis void svc_unregister(prognum, versnum)
u_long prognum, versnum;

Description svc_unregister() removes all mapping of the double [prognum, versnum] to
dispatch routine, and of the triple [prognum, versnum,*] to port number.

Parameters prognum Program number.

v ersnum Version number.

Files rpc.h - RPC include file.

See Also svc_freeargs(), svc_getargs(), svc_getcaller(), svc_getreqset(), svc_getreq(),
svc_register(), svc_sendreply()

svcerr_weakauth()
Called when insufficient authentication parameters are given.

Synopsis void svcerr_weakauth(xprt)
SVCXPRT *xprt;

Description svcerr_weakauth() is called by a service dispatch routine that refuses to
perform a remote procedure call due to insufficient (but correct) authentication
parameters. The routine calls svcerr_auth(xprt, AUTH_TOOWEAK).

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr_progvers(), svcerr_systemerr()

A–30 RPC/XDR Programmer's Reference

svcerr_auth()

svcerr_auth()
Called after an authentication error.

Synopsis void svcerr_auth(xprt, why)
SVCXPRT *xprt
enum auth_stat why;

Description svcerr_auth() is called by a service dispatch routine that refuses to perform a
remote procedure call due to an authentication error.

Parameters xprt RPC service transport handle.

w hy Error.

Files rpc.h - RPC include file.

See Also svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth()

svcerr_decode()
Called for parameter decoding error.

Synopsis void svcerr_decode(xprt)
SVCXPRT *xprt;

Description svcerr_decode() is called by a service dispatch routine that cannot successfully
decode its parameters. See also svc_getargs().

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also svcerr_auth(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth()

RPC Manual Pages A–31

svcerr_noproc()

svcerr_noproc()
Called for procedure number error.

Synopsis void svcerr_noproc(xprt)
SVCXPRT *xprt;

Description svcerr_noproc() is called by a service dispatch routine that does not implement
the procedure number that the caller requests.

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also svcerr_auth(), svcerr_decode(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth()

svcerr_noprog()
Called when program is not registered.

Synopsis void svcerr_noprog(xprt)
SVCXPRT *xprt;

Description svcerr_noprog() is called when the desired program is not registered with the
RPC package. Service implementors usually do not need this routine.

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth()

A–32 RPC/XDR Programmer's Reference

svcerr_progvers()

svcerr_progvers()
Called when program version is not registered.

Synopsis void svcerr_progvers(xprt)
SVCXPRT *xprt;

Description svcerr_progvers() is called when the desired version of a program is not
registered with the RPC package. Service implementors usually do not need
this routine.

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also svcerr_auth(), svcerr_decode(), svcerr_noproc(),
svcerr_noprog(),svcerr_systemerr(), svcerr_weakauth()

svcerr_systemerr()
Called when a system error is detected.

Synopsis void svcerr_systemerr(xprt)
SVCXPRT *xprt;

Description svcerr_systemerr() is called by a service dispatch routine when it detects a
system error not covered by any particular protocol. For example, if a service
can no longer allocate storage, it may call this routine.

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr_progvers(), svcerr_weakauth()

RPC Manual Pages A–33

svcfd_create()

svcfd_create()
Create a service on top of any open descriptor.

Synopsis void svcfd_create(fd, sendsize, recvsize)
int fd;
u_int sendsize;
u_int recvsize;

Description svcfd_create() creates a service on top of any open descriptor. Typically, this
descriptor is a connected socket for a stream protocol such as TCP. sendsize
and recvsize indicate sizes for the send and receive buffers. If they are zero, a
reasonable default is chosen.

Parameters fd Descriptor.

endsize Size of send buffer.

r ecvsize Size of receive buffer.

Files rpc.h - RPC include file.

See Also svctcp_create(), svcudp_create()

svcraw_create()
Create an RPC service transport.

Synopsis SVCXPRT *svcraw_create()

Description svcraw_create() creates an RPC service transport, to which it returns a pointer.
The transport is really a buffer within the process’s address space, so the
corresponding RPC client should live in the same address space; see
clntraw_create(). This routine allows simulation of RPC and acquisition of RPC
overheads (such as round trip times), without any kernel interference. This
routine returns NULL if it fails.

Files rpc.h - RPC include file.

See Also clntraw_create()

A–34 RPC/XDR Programmer's Reference

svctcp_create()

svctcp_create()
Create a TCP/IP based service transport.

Synopsis SVCXPRT *svctcp_create(sock, send_buf_size, recv_buf_size)
int sock;
u_int send_buf_size, recv_buf_size;

Description svctcp_create() creates a TCP/IP-based RPC service transport, to which it
returns a pointer. The transport is associated with the socket sock, which may
be RPC_ANYSOCK, in which case a new socket is created. If the socket is not
bound to a local TCP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_sock is the transport’s socket descriptor; xprt->xp_port is
the transport’s port number. This routine returns NULL if it fails. Since TCP-
based RPC uses buffered I/O, users may specify the size of buffers; values of
zero choose suitable defaults.

Parameters sock Socket.

send_buf_size Size of send buffer.

r ecv_buf_size Size of receive buffer.

Files rpc.h - RPC include file.

See Also svcudp_create()

RPC Manual Pages A–35

svcudp_create()

svcudp_create()
Create a UDP/IP based service transport.

Synopsis SVCXPRT *svcudp_create(sock)
int sock;

Description svcudp_create() creates a UDP/IP-based RPC service transport, to which it
returns a pointer. The transport is associated with the socket sock, which may
be RPC_ANYSOCK, in which case a new socket is created. If the socket is not
bound to a local UDP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_sock is the transport’s socket descriptor; whereas the
field xprt->xp_port is the transport’s port number. This routine returns NULL if
it fails.

Since UDP-based RPC messages can only hold up to 8K of encoded data, this
transport cannot be used for procedures that take large arguments or return
huge results.

Parameters s ock Socket.

Files rpc.h - RPC include file.

See Also svctcp_create()

xdr_accepted_reply()
Encode RPC reply messages.

Synopsis bool_t xdr_accepted_reply(xdrs, ar)
XDR *xdrs;
struct accepted_reply *ar;

Description xdr_accepted_reply() is used for encoding RPC reply messages. This routine is
useful for users who wish to generate RPC-style messages without using the
RPC package. This routine returns TRUE if successful, otherwise it returns
FALSE.

Parameters xdrs XDR structure.

a r Reply.

Files rpc.h - RPC include file.

See Also xdr_authunix_parms(), xdr_callhdr(), xdr_callmsg(), xdr_opaque_auth(),
xdr_pmap(), xdr_pmaplist(), xdr_rejected_reply(), xdr_replymsg()

A–36 RPC/XDR Programmer's Reference

xdr_authunix_parms()

xdr_authunix_parms()
Describe UNIX credentials.

Synopsis bool_t xdr_authunix_parms(xdrs, aupp)
XDR *xdrs;
struct authunix_parms *aupp;

Description xdr_authunix_parms() is used for describing UNIX credentials. This routine is
useful for users who wish to generate these credentials without using the RPC
authentication package. This routine returns TRUE if successful, otherwise it
returns FALSE.

Parameters xdrs XDR structure.

a upp UNIX credentials.

Files rpc.h - RPC include file.

See Also xdr_accepted_reply(), xdr_callhdr(), xdr_callmsg(), xdr_opaque_auth(),
xdr_pmap(), xdr_pmaplist(), xdr_rejected_reply(), xdr_replymsg()

xdr_callhdr()
Describe RPC call header messages.

Synopsis void xdr_callhdr(xdrs, chdr)
XDR *xdrs;
struct rpc_msg *chdr;

Description xdr_callhdr() is used for describing RPC call header messages. It encodes the
static part of the call message header in the XDR language format. It includes
information such as transaction ID, RPC version number, program number,
and version number. This routine is useful for users who wish to generate RPC-
style messages without using the RPC package.

Parameters xdrs XDR structure.

c hdr Call header message.

Files rpc.h - RPC include file.

See Also xdr_accepted_reply(), xdr_authunix_parms(), xdr_callmsg(),
xdr_opaque_auth(), xdr_pmap(), xdr_pmaplist(), xdr_rejected_reply(),
xdr_replymsg()

RPC Manual Pages A–37

xdr_callmsg()

xdr_callmsg()
Describe RPC call messages.

Synopsis bool_t xdr_callmsg(xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

Description xdr_callmsg() is used for describing RPC call messages. It includes all the RPC
call information such as transaction ID, RPC version number, program number
and version number, authentication information, etc. This routine is useful for
users who wish to generate RPC-style messages without using the RPC
package.

This routine returns TRUE if successful, FALSE otherwise

Parameters xdrs XDR structure.

c msg Call message.

Files rpc.h - RPC include file.

See Also xdr_accepted_reply(), xdr_authunix_parms(), xdr_callhdr(),
xdr_opaque_auth(), xdr_pmap(), xdr_pmaplist(), xdr_rejected_reply(),
xdr_replymsg()

xdr_opaque_auth()
Describe RPC authentication information message.

Synopsis bool_t xdr_opaque_auth(xdrs, ap)
XDR *xdrs;
struct opaque_auth *ap;

Description xdr_opaque_auth() is used for describing RPC authentication information
messages. This routine is useful for users who wish to generate RPC-style
messages without using the RPC package. This routine returns TRUE if
successful, FALSE otherwise.

Parameters xdrs XDR structure.

a p Authentication information message.

Files rpc.h - RPC include file.

See Also xdr_accepted_reply(), xdr_authunix_parms(), xdr_callhdr(), xdr_callmsg(),
xdr_pmap(), xdr_pmaplist(), xdr_rejected_reply(), xdr_replymsg()

A–38 RPC/XDR Programmer's Reference

xdr_pmap()

xdr_pmap()
Describe parameters to portmap procedures.

Synopsis bool_t xdr_pmap(xdrs,regs)
XDR *xdrs;
struct pmap *regs;

Description xdr_pmap() is used for describing parameters to various portmap procedures,
externally. This routine is useful for users who wish to generate RPC-style
messages without using the pmap package.

This routine returns TRUE if successful, FALSE otherwise.

Parameters xdrs XDR structure.

r egs Portmap parameters.

Files rpc.h - RPC include file.

pmapport.h - Portmap include file.

See Also xdr_accepted_reply(), xdr_authunix_parms(), xdr_callhdr(), xdr_callmsg(),
xdr_opaque_auth(), xdr_pmaplist(), xdr_rejected_reply(), xdr_replymsg()

RPC Manual Pages A–39

xdr_pmaplist()

xdr_pmaplist()
Describe list of portmappings.

Synopsis bool_t xdr_pmaplist(xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

Description xdr_pmaplist() is used for describing a list of port mappings, externally. This
routine is useful for users who wish to generate RPC-style messages without
using the pmap interface.

This routine returns TRUE if successful, FALSE otherwise.

Parameters xdrs XDR structure.

r p Port mapping list.

Files rpc.h -RPC include file.

pmapport.h - portmap include file.

See Also xdr_accepted_reply(), xdr_authunix_parms(), xdr_callhdr(), xdr_callmsg(),
xdr_opaque_auth(), xdr_pmap(), xdr_rejected_reply(), xdr_replymsg()

xdr_rejected_reply()
Describe RPC reply messages.

Synopsis bool_t xdr_rejected_reply(xdrs, rr)
XDR *xdrs;
struct rejected_reply *rr;

Description xdr_rejected_reply() is used for describing RPC reply messages. This routine is
useful for users who wish to generate RPC-style messages without using the
RPC package.

This routine returns TRUE if successful, FALSE otherwise.

Parameters xdrs XDR structure.

r r Reply message.

Files rpc.h - RPC include file.

See Also xdr_accepted_reply(), xdr_authunix_parms(), xdr_callhdr(), xdr_callmsg(),
xdr_opaque_auth(), xdr_pmap(), xdr_pmaplist(), xdr_replymsg()

A–40 RPC/XDR Programmer's Reference

xdr_replymsg()

xdr_replymsg()
Describe RPC reply messages.

Synopsis bool_t xdr_replymsg(xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *rmsg;

Description xdr_replymsg() is used for describing RPC reply messages. This reply could be
an acceptance, rejection, or NULL. This routine is useful for users who wish to
generate RPC-style messages without using the RPC package.

This routine returns TRUE if successful, FALSE otherwise.

Parameters xdrs XDR structure.

r ms Reply message.

Files rpc.h - RPC include file.

See Also xdr_accepted_reply(), xdr_authunix_parms(), xdr_callhdr(), xdr_callmsg(),
xdr_opaque_auth(), xdr_pmap(), xdr_pmaplist(), xdr_rejected_reply()

xprt_register()
Register RPC service transport handle.

Synopsis void xprt_register(xprt)
SVCXPRT *xprt;

Description xprt_register() is used after RPC service transport handles are created, to
register them with the RPC service package. This routine modifies the global
variable svc_fds. Service implementors usually do not need this routine.

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also xprt_unregister()

RPC Manual Pages A–41

xprt_unregister()

xprt_unregister()
Unregister RPC service transport handle.

Synopsis void xprt_unregister(xprt)
SVCXPRT *xprt;

Description xprt_unregister() is used before an RPC service transport handle is destroyed,
to unregister it with the RPC service package. This routine modifies the global
variable svc_fds. Service implementors usually do not need this routine.

Parameters x prt RPC service transport handle.

Files rpc.h - RPC include file.

See Also xprt_unregister()

A–42 RPC/XDR Programmer's Reference

Appendix

B XDR Manual Pages

This appendix lists the XDR library calls in UNIX-style manual page format.

XDR Library Calls
The XDR library calls are listed in alphabetical order.

Following a brief introductory statement summarizing its use, each function is
described using the documentation style of UNIX. The following table lists the
basic components of each function description:

Call Description

Synopsis A synopsis of the function is given in C language format. The
function prototype statement is listed showing all function
arguments.

Description A description of the function is given, including any special rules
for specifying arguments, alternative uses of the function, and any
results returned.

Parameters Each parameter for the call is described.

Files Any required include files are listed in this section.

See Also References to related functions are given.

XDR Manual Pages B–1

xdr_array()

xdr_array()
Translate between arrays and their external representations.

Synopsis bool_t xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc_t elproc;

Description xdr_array() is a filter primitive that translates between variable-length arrays
and their corresponding external representations. The parameter arrp is the
address of the pointer to the array, while sizep is the address of the element
count of the array; this element count cannot exceed maxsize. The parameter
elsize is the sizeof each of the array's elements, and elproc is an XDR filter that
translates between the array elements’ C form and their external representation.
This routine returns TRUE if it succeeds, FALSE otherwise.

Parameters
xdrs XDR stream.

arrp Address of the pointer to the array.

sizep Address of the element count of the array; this element count
 cannot exceed maxsize.

maxsize Maximum element count.

elsize Size of each of the array's elements.

elproc XDR filter that translates between the array elements' C form
and their external representation.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char().

B–2 RPC/XDR Programmer's Reference

xdr_bool()

xdr_bool()
Translate between booleans and their external representations.

Synopsis bool_t xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

Description xdr_bool() is a filter primitive that translates between booleans and their
external representations. When encoding data, this filter produces values of
either TRUE or FALSE. This routine returns TRUE if it succeeds, FALSE
otherwise.

Parameters xdrs XDR stream.

bp Address of the Boolean.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char().

xdr_bytes()
Translate between counted byte strings and their external representations.

Synopsis bool_t xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep, maxsize;

Description xdr_bytes() is a filter primitive that translates between counted byte strings and
their external representations. The parameter sp is the address of the string
pointer. The length of the string is located at sizep; strings cannot be longer
than maxsize. This routine returns TRUE if it succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

sp Address of the string pointer.

sizep Length of the string.

maxsize Maximum length of string.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char().

XDR Manual Pages B–3

xdr_char()

xdr_char()
Translate between C characters and their external representations.

Synopsis bool_t xdr_char(xdrs, cp)
XDR *xdrs;
char *cp;

Description xdr_char() is a filter primitive that translates between C characters and their
external representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

Note: Encoded characters are not packed and occupy four bytes each. For arrays
of characters, it is worthwhile to consider xdr_bytes(), xdr_opaque() or
xdr_string().

Parameters xdrs XDR stream.

cp Address of the character.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char(), xdr_opaque(), xdr_string().

 xdr_destroy()

Destroy routine associated with XDR stream.

Synopsis void xdr_destroy(xdrs)
XDR *xdrs;

Description xdr_destroy() is a macro that invokes the destroy routine associated with the
XDR stream, xdrs. Destruction usually involves freeing private data structures
associated with the stream. Using xdrs after invoking xdr_destroy() is
undefined. This routine is called indirectly via the pointer stored in the
structure XDR. This routine may also be called using the upper-case
XDR_DESTROY().

Parameters xdrs XDR stream.

Files rpc.h - RPC include file.

B–4 RPC/XDR Programmer's Reference

xdr_enum()

xdr_double()

Translate between C double precision numbers and their external
representations.

Synopsis bool_t xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

Description xdr_double() is a filter primitive that translates between C double precision
numbers and their external representations. This routine returns TRUE if it
succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

dp Address of double precision number.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char(), xdr_opaque(), xdr_string().

xdr_enum()
Translate between C enums and their external representations.

Synopsis bool_t xdr_double(xdrs, ep)
XDR *xdrs;
enum_t *ep;

Description xdr_enum() is a filter primitive that translates between C enums and their
external representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

Note: Enums with the IBM C/370 compiler are scaled by the size of the
maximum value defined for the enum. Therefore an enum may be a byte, two
bytes or four bytes long. This routine assumes that an enum will be four bytes
long.

Parameters xdrs XDR stream.

ep Enum.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char(), xdr_opaque(), xdr_string().

XDR Manual Pages B–5

xdr_float()

xdr_float()
Translate between C floats and their external representations.

Synopsis bool_t xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

Description xdr_float() is a filter primitive that translates between C floats and their
external representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

Parameters xdrs XDR stream.

fp Enum.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char(), xdr_opaque(), xdr_string().

xdr_free()
Generic freeing routine.

Synopsis void xdr_free(proc, objp)
xdrproc_t proc;
char *objp;

Description xdr_free() is a generic freeing routine. The first argument is the XDR routine for
the object being freed. The second argument is a pointer to the object itself. The
pointer passed to this routine is not freed, but what it points to is freed
(recursively), such that objects pointed to are also freed, for example, limited
lists.

Parameters xdrproc XDR routine.

objp Object to be freed.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char(), xdr_opaque(), xdr_string().

B–6 RPC/XDR Programmer's Reference

xdr_getpos()

xdr_getpos()
Invoke get-position routine.

Synopsis u_int xdr_getpos(xdrs)
XDR *xdrs;

Description xdr_getpos() is a macro that invokes the get-position routine associated with
the XDR stream, xdrs. The routine returns an unsigned integer, which indicates
the position of the XDR byte stream. A desirable feature of XDR streams is that
simple arithmetic works with this number, although the XDR stream instances
need not guarantee this. This routine is called indirectly via the pointer stored
in the structure XDR. This routine may also be called using the upper-case
XDR_GETPOS().

Parameters xdrs XDR stream.

Files rpc.h - RPC include file.

See Also xdr_inline().

xdr_inline()
Invoke in-line routine.

 Synopsis xdr_inline(xdrs, len)
XDR *xdrs;
int len;

Description xdr_inline() is a macro that invokes the in-line routine associated with the XDR
stream, xdrs. The routine returns a pointer to a contiguous piece of the stream's
buffer; len is the byte length of the desired buffer.

The pointer is cast to long *. This routine is called indirectly via the pointer
stored in the structure XDR. This routine may also be called using the upper-
case XDR_GETPOS().

xdr_inline() may return NULL (0) if it cannot allocate a contiguous piece of a
buffer. Therefore the behavior may vary among stream instances; it exists for
the sake of efficiency.

Parameters xdrs XDR stream.

len Length of desired buffer.

Files rpc.h - RPC include file.

See Also xdr_getpos().

XDR Manual Pages B–7

xdr_int()

xdr_int()
Translate between C integers and their external representations.

Synopsis bool_t xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

Description xdr_int() is a filter primitive that translates between C integers and their
external representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

Parameters xdrs XDR stream.

ip Integer.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char()cc, xdr_opaque(), xdr_string().

xdr_long()
Translate between C long integers and their external representations.

Synopsis bool_t xdr_long(xdrs, lp)
XDR *xdrs;
long *lp;

Description xdr_long() is a filter primitive that translates between C long integers and their
external representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

Parameters xdrs XDR stream.

lp Long.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char(), xdr_opaque(), xdr_string().

B–8 RPC/XDR Programmer's Reference

xdr_opaque()

xdr_opaque()
Translate between fixed size opaque data and its external representation.

Synopsis bool_t xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

Description xdr_opaque() is a filter primitive that translates between fixed size opaque data
and its external representation. The parameter cp is the address of the opaque
object, and cnt is its size in bytes. This routine returns TRUE if it succeeds,
FALSE otherwise.

Parameters xdrs XDR stream.

cp Opaque object.

cn Size of object.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char(), xdr_opaque(), xdr_string().

XDR Manual Pages B–9

xdr_pointer()

xdr_pointer()
Provide pointer chasing within structures.

Synopsis bool_t xdr_pointer(xdrs, objpp, objsize, xdrobj)
XDR *xdrs;
char **objpp;
u_int objsize;
xdrproc_t xdrobj;

Description xdr_pointer() provides pointer chasing within structures. xdr_pointer() is like
xdr_reference() except that it serializes NULL pointers, whereas xdr_reference()
does not. Thus, xdr_pointer() can represent recursive data structures, such as
binary trees or linked lists. This routine returns TRUE if it succeeds, FALSE
otherwise.

Parameters xdrs XDR stream.

objpp Address of object pointer.

objsize Size of object.

xdrobj XDR procedure that filters the structure between its C form
and
 its external representation.

Files rpc.h - RPC include file.

See Also xdr_reference()

B–10 RPC/XDR Programmer's Reference

xdr_reference()

xdr_reference()
Provides pointer chasing within structures.

Synopsis bool_t xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

Description xdr_reference() is a primitive that provides pointer chasing within structures.
The parameter pp is the address of the pointer; size is the size of the structure
that *pp points to; and proc is an XDR procedure that filters the structure
between its C form and its external representation. This routine returns TRUE if
it succeeds, FALSE otherwise.

This routine does not understand NULL pointers. Use xdr_pointer() instead.

Parameters xdrs XDR stream.

pp Address of the pointer.

size Size of the structure that *pp points to.

proc Size of the structure between its C and form and its external
 representation.

Files rpc.h - RPC include file.

See Also xdr_pointer().

XDR Manual Pages B–11

xdr_setpos()

xdr_setpos()
Invoke set position routine.

Synopsis bool_t xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

Description xdr_setpos() is a macro that invokes the set position routine associated with the
XDR stream xdrs. The parameter pos is a position value obtained from
xdr_getpos(). This routine returns TRUE if the XDR stream could be
repositioned, and FALSE otherwise. This routine is called indirectly via the
pointer stored in the structure XDR. This routine may also be called with the
upper-case XDR_SETPOS.

It is difficult to reposition some types of XDR streams, so this routine may fail
with one type of stream and succeed with another.

Parameters xdrs XDR stream.

pos Position value obtained from xdr_getpos().

Files rpc.h - RPC include file.

See Also xdr_getpos().

xdr_short()
Translate between C short integers and their external representations.

Synopsis bool_t xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

Description xdr_short() is a filter primitive that translates between C short integers and
their external representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

Parameters xdrs XDR stream.

sp Pointer to short.

Files rpc.h - RPC include file.

See Also xdr_long().

B–12 RPC/XDR Programmer's Reference

xdr_string()

xdr_string()
Translate between C strings and their external representations.

Synopsis bool_t xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

Description xdr_string() is a filter primitive that translates between C strings and their
corresponding external representations. Strings cannot be longer than maxsize.

*sp is the address of the string's pointer. While decoding, if *sp is NULL, then
the necessary storage is allocated to hold this null-terminated string and *sp is
set to point to this. Use xdr_free() to free this storage.

This routine returns TRUE if it succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

sp Address of the string’s pointer.

maxsize Maximum size of string.

Files rpc.h - RPC include file

See Also xdr_char().

xdr_u_char()
Translate between unsigned C chars and their external representations.

Synopsis bool_t xdr_u_char(xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

Description xdr_u_char() is a filter primitive that translates between unsigned C characters
and their external representations. This routine returns TRUE if it succeeds,
FALSE otherwise.

Parameters xdrs XDR stream.

ucp XDR stream. Pointer to the unsigned character.

Files rpc.h - RPC include file.

See Also xdr_char().

XDR Manual Pages B–13

xdr_u_int()

xdr_u_int()
Translate between unsigned C integers and their external representations.

Synopsis bool_t xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned int *up;

Description xdr_u_int() is a filter primitive that translates between C unsigned integers and
their external representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

Parameters xdrs XDR stream.

up Pointer to unsigned integer.

Files rpc.h - RPC include file.

See Also xdr_int()

 xdr_u_long()
Translate between unsigned C long integers and their external representations.

Synopsis bool_t xdr_u_long(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

Description xdr_u_long() is a filter primitive that translates between C unsigned long
integers and their external representations. This routine returns TRUE if it
succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

ulp Pointer to the unsigned long integer.

Files rpc.h - RPC include file.

See Also xdr_int()

B–14 RPC/XDR Programmer's Reference

xdr_u_short()

xdr_u_short()
Translate between unsigned C short integers and their external representations.

Synopsis bool_t xdr_u_short(xdrs, usp)
XDR *xdrs;
unsigned short *usp;

Description xdr_u_short() is a filter primitive that translates between C unsigned short
integers and their external representations. This routine returns TRUE if it
succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

usp Pointer to unsigned short integer.

Files rpc.h - RPC include file.

See Also xdr_int()

XDR Manual Pages B–15

xdr_union()

xdr_union()
Translate between discriminated C union and its external representation.

Synopsis bool_t xdr_union(xdrs, dscmp, unp, choices, defaultarm)
XDR *xdrs;
int *dscmp;
char *unp
struct xdr_discrim *choices;
bool_t (*defaultarm)(); /* may equal NULL */

Description xdr_union() is a filter primitive that translates between a discriminated C union
and its external representation. It first translates the discriminant of the union
located at dscmp. This discriminant is always an enum_t. Next the union
located at unp is translated. The parameter choices is a pointer to an array of
xdr_discrim() structures. Each structure contains an ordered pair of [value,
proc]. If the union's discriminant is equal to the associated value, then the proc
is called to translate the union. The end of the xdr_discrim() structure array is
denoted by a routine value of NULL. If the discriminant is not found in the
choices array, then the defaultarm procedure is called (if it is not NULL). This
routine returns TRUE if it succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

dscmp Union discriminant.

unp Address of union.

choices Pointer to array of xdr_discrim() structures.

defaultarm Procedure called if discriminant not found in choices array.

Files rpc.h - RPC include file.

See Also xdr_discrim()

B–16 RPC/XDR Programmer's Reference

xdr_vector()

xdr_vector()
Translate between fixed length arrays and their external representations.

Synopsis bool_t xdr_vector(xdrs, arrp, size, elsize, elproc)
XDR *xdrs;
char *arrp;
u_int size, elsize;
xdrproc_t elproc;

Description xdr_vector() is a filter primitive that translates between fixed length arrays and
their external representations. The parameter arrp is the address of the pointer
to the array, while size is the element count of the array. The parameter elsize is
the size of each of the array's elements, and elproc is an XDR filter that
translates between the array elements' C form, and their external
representation. This routine returns TRUE if it succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

arrp Address of the pointer to the array.

size Element count of the array.

elsize Size of each of the array’s elements.

elproc XDR filter.

Files rpc.h - RPC include file.

See Also xdr_array()

xdr_void()
Routine that always returns one.

Synopsis bool_t xdr_void()

Description xdr_void() always returns one. It may be passed to RPC routines that require a
function parameter, where nothing is to be done.

Files rpc.h - RPC include file

XDR Manual Pages B–17

xdr_wrapstring()

xdr_wrapstring()
Call xdr_string().

Synopsis bool_t xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

Description xdr_wrapstring() is a primitive that calls xdr_string(xdrs, sp,
MAXUN.UNSIGNED); where MAXUN.UNSIGNED is the maximum value of
an unsigned integer. xdr_wrapstring() is handy because the RPC package
passes a maximum of two XDR routines as parameters and xdr_string(), one of
the most frequently used primitives, requires three. Returns TRUE if it
succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

sp Address of the string.

Files rpc.h - RPC include file.

 See Also xdr_array()

xdrmem_create()
Initialize XDR stream.

Synopsis void xdrmem_create(xdrs, addr, size, op)
XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

Description xdrmem_create() initializes the XDR stream object pointed to by xdrs. The
stream's data is written to, or read from, a chunk of memory at location addr
whose length is no more than size bytes long. The op determines the direction
of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Parameters xdrs XDR stream.

addr Object.

size Length of object.

op Direction of XDR stream.

Files rpc.h - RPC include file.

See Also xdr_bool(), xdr_bytes(), xdr_char(), xdr_opaque(), xdr_string().

B–18 RPC/XDR Programmer's Reference

xdrrec_create()

 xdrrec_create()
Initialize XDR stream object.

Synopsis void xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;
u_int sendsize, recvsize;
char *handle;
int (*readit)(), (*writeit)();

Description xdrmem_create() initializes the XDR stream object pointed to by xdrs. The
stream's data is written to a buffer of size sendsize; a value of zero indicates the
system should use a suitable default. The stream's data is read from a buffer of
size recvsize; it too can be set to a suitable default by passing a zero value.
When a stream's output buffer is full, writeit is called. Similarly, when a
stream's input buffer is empty, readit is called. The behavior of these two
routines is similar to the system calls read and write, except that handle is
passed to the former routines as the first parameter.

Note: The XDR stream's op field must be set by the caller.

This XDR stream implements an intermediate record stream. Therefore, there
are additional bytes in the stream to provide record boundary information.

Parameters xdrs XDR stream.

sendsize Write buffer size.

recvsize Read buffer size.

handle Passed to redit and writeit routines.

readit Called when input buffer is empty.

writeit Called when output buffer is full.

Files rpc.h - RPC include file.

See Also read(), write()

XDR Manual Pages B–19

xdrrec_endofrecord()

xdrrec_endofrecord()
Mark data in buffer as completed record.

Synopsis bool_t xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
int sendnow;

Description xdrmem_endofrecord() can be invoked only on streams created by
xdrrec_create(). The data in the output buffer is marked as a completed record,
and the output buffer is optionally written out if sendnow is non-zero. This
routine returns TRUE if it succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

sendnow Write out data (if set).

Files rpc.h - RPC include file.

See Also xdrrec_create(), xdrrec_eof(), xdrrec_skiprecord()

xdrrec_eof()
Mark data in buffer as end of file.

Synopsis bool_t xdrrec_eof(xdrs, empty)
XDR *xdrs;
int empty;

Description xdrmem_eof() can be invoked only on streams created by xdrrec_create(). After
consuming the rest of the current record in the stream, this routine returns
TRUE if the stream has no more input, FALSE otherwise.

Parameters xdrs XDR stream.

empty No more data.

Files rpc.h - RPC include file.

See Also xdrrec_create(), xdrrec_endofrecord(), xdrrec_skiprecord()

B–20 RPC/XDR Programmer's Reference

xdrrec_skiprecord()

xdrrec_skiprecord()
Discard rest of current record.

Synopsis bool_t xdrrec_skiprecord(xdrs)
XDR *xdrs;

Description xdrmem_skiprecord() can be invoked only on streams created by
xdrrec_create(). It tells the XDR implementation that the rest of the current
record in the stream's input buffer should be discarded. This routine returns
TRUE if it succeeds, FALSE otherwise.

Parameters xdrs XDR stream.

Files rpc.h - RPC include file.

See Also xdrrec_create(), xdrrec_endofrecord(), xdrrec_eof().

xdrstdio_create()
Initialize XDR stream.

Synopsis void xdrstdio_create(xdrs, file, op)
XDR *xdrs;
FILE *file;
enum xdr_op op;

Description xdrstdio_create() initializes the XDR stream object pointed to by xdrs. The XDR
stream data is written to, or read from, the standard I/O stream file. The
parameter op determines the direction of the XDR stream (either
XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Note: The destroy routine associated with such XDR streams calls fflush() on
the file stream, but never fclose().

Parameters xdrs XDR stream.

file Standard I/O stream.

op Direction of XDR stream.

Files rpc.h - RPC include file.

See Also xdrmem_create(), xdrrec_create().

XDR Manual Pages B–21

Appendix

C RPC Library Header Files

This appendix describes the RPC library header files. It lists the header files used
by the RPC library.

Header Files
You should include rpc.h, which pulls in all the necessary header files for an
RPC application program. If the user wants to interface to the portmapper,
pmapclnt.h must be included explicitly.

The header files used by the RPC library are listed in the following table:

Header File Description

auth.h Interface to generic authentication routines included by rpc.h
automatically.

authunix.h Interface to UNIX type authentication routines included by rpc.h
automatically.

clnt.h Interface to routines required by RPC clients included by rpc.h
automatically.

pmapclnt.h Interface to portmapper services for clients and servers.

pmapprot.h Describes the portmapper protocol.

pmaprmt.h Interface to portmapper remote call service.

RPC Library Header Files C–1

Header Files

Header File Description

rpc.h Includes the necessary header files for an RPC client or server.
This is the main header file that must be included by user
programs. It pulls in these header files:
■ xdrtypes.h
■ auth.h
■ authunix.h
■ svcauth.h
■ inet.h
■ clnt.h
■ rpcmsc.h
■ netdb.h
■ xdr.h
■ rpcmsg.h
■ svc.h

rpcget.h Internal interface file required by routines of the RPC library. /
This file is not required by users to interface to the RPC library.

rpcmsc.h Internal interface header file for miscellaneous routines; included
by rpc.h automatically.

rpcmsg.h Definition of the RPC message format included by rpc.h
automatically.

svc.h Interface required by RPC servers; included by rpc.h
automatically (Also see svcrpc.h).
Due to a conflicting include filename for the SAS/C compiler, the
file is renamed to svcrpc.h.

svcauth.h Interface to server side RPC authentication included by rpc.h
automatically.

svccall.h Internal interface definitions not seen externally by the RPC
library.

svcrpc.h Interface required by RPC servers; included by rpc.h
automatically.
This file is normally called svc.h. Due to a conflicting include
filename for the SAS/C compiler, this include file has been
renamed to svcrpc.h.

C–2 RPC/XDR Programmer's Reference

Header Files

Header File Description

svctcp.h Internal interface definition for RPC servers using TCP as the
transport mechanism.
Not required by users of the RPC library.

xrd.h Interface definition of external data representation serialization
routines; included by rpc.h automatically.

xdrrst.h Internal interface definition for record formatting when using a
byte stream protocol such as TCP.
Not required to be included by a user's RPC program.

xdrtypes.h Addition types required by the RPC library routines and
definitions of RPC error message numbers; included by rpc.h
automatically.

RPC Library Header Files C–3

Appendix

D RPC Log

This appendix provides reference information on RPC Log. It describes the
externally defined function rpclog().

RPC Log Interface
When an error is detected by the RPC library, it calls an externally defined
function called rpclog(). The default rpclog() shipped with the RPC library
simply formats the information passed to it and then prints it to stderr.

Source for Default rpclog

The following is the source for the default rpclog():
#include <stdio.h>
#include <rpc.h>

void rpclog(number, csectp, funcp, msgp)
int number;
char *csectp;
char *funcp;
char *msgp;
{
 fprintf(stderr, "%s%s\n", funcp, msgp);
 return;
}

number The error number (defined in xdrtype.h).

csectp A pointer to a string defining the csect that encountered the error and called
rpclog().

funcp A string defining the function that encountered the error and called rpclog().

msgp A pointer to the message text.

If the default rpclog() function does not suffice for your application, it may be
replaced by an application specific function. The new function should allow for
the same calling sequence and return a void.

RPC Log D–1

Appendix

E Sample JCL

This appendix includes sample JCL. It includes these sections:

■ Nonreentrant User Program: C/370 Compiler—Compile and link a
nonreentrant user program using the C socket library, the RPC library and
the C/370 compiler

■ Reentrant User Program: C/370 Compiler—Compile and link a reentrant
user program using the C socket library, the RPC library and the C/370
compiler

■ Nonreentrant User Program: SAS/C Compiler—Compile and link a
nonreentrant user program using the C socket library, the RPC library and
the SAS/C compiler

■ Reentrant User Program: SAS/C Compiler—Compile and link a reentrant
user program using the C socket library, the RPC library and the SAS/C
compiler

Note: If you are link-editing with the BINDER (HEWLF096) under SMP/E, you
may get the error message IEW2480W. This message can be safely ignored. You
can turn this message off by setting option MSGLEVEL=4 in the PARM field of
the linkedit (binder).

Sample JCL E–1

Nonreentrant User Program: C/370 Compiler

Nonreentrant User Program: C/370 Compiler
//RPCIBMC JOB
//*
//* SAMPLE JCL TO COMPILE, LINK, AND EXECUTE A NONREENTRANT
//* USER PROGRAM USING THE TCP/API C SOCKET LIBRARY, THE
//* TCP/API RPC/XDR LIBRARY, AND THE IBM C/370 C COMPILER.
//*
//* EDIT THE JOB JCL STATEMENT, VERIFY THE DATA SET NAME(S)
//* OF THE USER'S DATA SETS, AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE TCP/IP TARGET DATA SETS (DSN'S TO BE VERIFIED
//* ARE MARKED BELOW WITH "<=== VERIFY ..."). THIS JOB ASSUMES
//* THAT THE STANDARD IBM C/370 EDCCLG JCL PROCEDURE IS
//* AVAILABLE IN YOUR INSTALLATION'S PROCLIB(S).
//*
//CLGNRENT EXEC EDCCLG,
// INFILE='USER.C(CPROG) <=== VERIFY DSNAME
// PARM='NORENT,DEF(IBMC)',
// GPARM='PROGRAM PARAMETERS' <=== VERIFY PARAMETERS
//*
//* INCLUDE THE TCP/API SOCKET INCLUDE (.H) DATA SET IN THE
//* COMPILER SYSLIB CONCATENATION. BOTH THE SOCKET AND RPC/XDR
//* INCLUDE FILES ARE FOUND IN THE SAME SYSLIB DATA SET.
//*
//COMPILE.SYSLIB DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&VSCCHD&CVER&EDCHDRS
//* INCLUDE THE TCP/API SOCKET SUBROUTINE LIBRARY DATA SET IN
//* THE LINKAGE EDITOR SYSLIB CONCATENATION. BOTH THE SOCKET
//* AND RPC/XDR LOAD MODULES ARE INCLUDED IN THE SAME SYSLIB
//* DATA SET.
//*
//LKED.SYSLIB DD
// DD
// DD DISP=SHR,DSN=TRGINDX.CILIB <=== VERIFY
DSNAME
//
//LKED.SYSIN DD DUMMY,DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120)

E–2 RPC/XDR Programmer's Reference

Reentrant User Program: C/370 Compiler

Reentrant User Program: C/370 Compiler
This JCL is for the C/370 version of the compiler.

If you are using the Ad/Cycle compiler, replace the following line (shown in
bold in the JCL):
// DD DISP=SHR,DSN=&VSCCHD&CVER&EDCHDRS

with this line:
// DD DISP=SHR,DSN=&LNGPRFX..SEDCDHDR

//RPCIBMCR JOB
//*
//* SAMPLE JCL TO COMPILE, LINK, AND EXECUTE A REENTRANT USER
//* PROGRAM USING THE TCP/API C SOCKET LIBRARY, THE TCP/API
//* RPC/XDR LIBRARY, AND THE IBM C/370 C COMPILER.
//*
//* EDIT THE JOB JCL STATEMENT, VERIFY THE DATA SET NAME(S)
//* OF THE USER'S DATA SETS, AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE TCP/IP TARGET DATA SETS (DSN'S TO BE VERIFIED ARE
//* MARKED BELOW WITH "<=== VERIFY ..."). THIS JOB ASSUMES THAT
//* THE STANDARD IBM C/370 EDCCPLG JCL PROCEDURE IS AVAILABLE
//* IN AVAILABLE IN YOUR INSTALLATION'S PROCLIB(S).
//*
//CLGRENT EXEC EDCCPLG,
// INFILE='USER.C(CPROG)', <=== VERIFY DSNAME
// CPARM='RENT,DEF(IBMC)',
// GPARM='PROGRAM PARAMETERS' <=== VERIFY PARAMETERS
//*
//* INCLUDE THE TCP/API SOCKET INCLUDE (.H) DATA SET IN THE
//* COMPILER SYSLIB CONCATENATION. BOTH THE SOCKET AND RPC/XDR
//* INCLUDE FILES ARE FOUND IN THE SAME SYSLIB DATA SET.
//*
//COMPILE.SYSLIB DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&VSCCHD&CVER&EDCHDRS <=== Ad/Cycle name
//*
//* INCLUDE THE TCP/API SOCKET SUBROUTINE OBJECT LIBRARY
//* DATA SET IN THE PREPROCESSOR SYSLIB CONCATENATION.
//* BOTH THE SOCKET AND RPC/XDR OBJECT MODULES ARE INCLUDED
//* IN THE SAME SYSLIB DATA SET.
//*
//PLKED.SYSLIB DD DISP=SHR,
// DSN=TRGINDX.CIROBJ <=== VERIFY DSNAME
//PLKED.SYSIN DD DSN=*.COMPILE.SYSLIN,DISP=(OLD,DELETE)
// DD *
 INCLUDE SYSLIB(S0SKCF)
 INCLUDE SYSLIB(S0INTR)
 INCLUDE SYSLIB(RPCFDS)
 ENTRY CEESTART
/*
//

Sample JCL E–3

Nonreentrant User Program: SAS/C Compiler

Nonreentrant User Program: SAS/C Compiler
//RPCSASC JOB
//*
//* SAMPLE JCL TO COMPILE, LINK, AND EXECUTE A NONREENTRANT
//* USER PROGRAM USING THE TCP/API C SOCKET LIBRARY, THE
//* TCP/API C RPC/XDR LIBRARY, AND THE SAS/C COMPILER. THIS
//* SAMPLE WORKS WITH SAS/C 4.50, 5.00, AND 5.01.
//*
//* EDIT THE JOB JCL STATEMENT, VERIFY THE DATA SET NAME(S)
//* OF THE USER'S DATA SETS, AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE TCP/IP TARGET DATA SETS (DSN'S TO BE VERIFIED
//* ARE MARKED BELOW WITH "<=== VERIFY ..."). THIS JOB ASSUMES
//* THAT THE STANDARD SAS SAS/C LC370CLG JCL PROCEDURE IS
//* AVAILABLE IN YOUR INSTALLATION'S PROCLIB(S).
//*
//CLNORENT EXEC LC370CLG,
// PARM.C='NORENT,DEF(SASC)',
// PARM.GO='PROGRAM PARAMETERS' <=== VERIFY
PARAMETERS
//*
//* TCP/IP INCLUDE FILE DATA SET MUST PRECEDE SAS/C
//* DATA SET. BOTH THE SOCKET AND RPC/XDR INCLUDE FILES
//* ARE IN THE SAME DATA SET.
//*
//C.SYSLIB DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&MACLIB
//C.SYSIN DD DISP=SHR,
// DSN=USER.C(CPROG) <=== VERIFY DSNAME
//*
//* TCP/IP OBJECT SYSLIB DATA SET MUST PRECEDE SAS/C
//* DATA SETS. BOTH THE SOCKET AND RPC/XDR LOAD
//* MODULES ARE IN THE SAME SYSLIB DATA SET.
//*
//LKED.SYSLIB DD DISP=SHR,
// DSN=TRGINDX.CSLIB <=== VERIFY DSNAME
// DD DISP=SHR,DSN=SASC.&ENV.LIB <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&SYSLIB
// DD DISP=SHR,DSN=&CALLLIB
//LKED.SYSIN DD DUMMY,DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120)

E–4 RPC/XDR Programmer's Reference

Reentrant User Program: SAS/C Compiler

Reentrant User Program: SAS/C Compiler
//RPCSASCR JOB
//*
//* SAMPLE JCL TO COMPILE, LINK, AND EXECUTE A REENTRANT C
//* PROGRAM USING THE TCP/API C SOCKET LIBRARY, THE TCP/IP
//* C RPC/XDR LIBRARY, AND THE SAS/C C COMPILER. THIS SAMPLE
//* WORKS WITH SAS/C 4.50, 5.00, AND 5.01.
//*
//* EDIT THE JOB JCL STATEMENT, VERIFY THE DATA SET NAME(S)
//* OF THE USER'S DATA SETS, AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE TCP/IP TARGET DATA SETS (DSN'S TO BE VERIFIED
//* ARE MARKED BELOW WITH "<=== VERIFY ..."). THIS JOB ASSUMES
//* THAT THE STANDARD SAS SAS/C LC370C AND LC370LRG JCL
//* PROCEDURES ARE AVAILABLE IN YOUR INSTALLATION'S PROCLIB(S).
//* STEP 1: COMPILE USER PROGRAM REENTRANTLY.
//*
//CCRENT EXEC LC370C,
// PARM.C='RENT,DEF(SASC)'
//*
//* TCP/IP INCLUDE FILE DATA SET MUST PRECEDE SAS/C
//* DATA SET. BOTH THE SOCKET AND RPC/XDR INCLUDE FILES
//* ARE IN THE SAME DATA SET.
//*
//C.SYSLIB DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&MACLIB
//C.SYSIN DD DISP=SHR,
// DSN=USER.C(CPROG) <=== VERIFY DSNAME
//*
//* STEP 2: LINK USER PROGRAM USING SAS/C CLINK
//* PREPROCESSOR AND THEN EXECUTE.
//*
//LKRENT EXEC LC370LRG,PARM.LKED='LIST,MAP,RENT',
// PARM.GO='PROGRAM PARAMETERS' <=== VERIFY PARAMETERS
//*
//* TCP/IP OBJECT SYSLIB DATA SET MUST PRECEDE SAS/C
//* DATA SETS. BOTH THE SOCKET AND RPC/XDR LOAD MODULES
//* ARE IN THE SAME SYSLIB DATA SET.
//*
//* TCP/IP OBJECT SYSLIB DATA SET MUST PRECEDE SAS/C
//* DATA SETS. BOTH THE SOCKET AND RPC/XDR LOAD MODULES
//* ARE IN THE SAME SYSLIB DATA SET.
//*
//LKED.SYSLIB DD DISP=SHR,DSN=TRGINDX.CSROBJ <=== VERIFY DSNAME
// DD DDNAME=AR#&ALLRES
// DD DISP=SHR,DSN=SASC.&ENV.OBJ <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&SYSLIB
// DD DISP=SHR,DSN=&CALLLIB
//LKED.SYSIN DD DISP=(OLD,DELETE),DSN=*.CCRENT.C.SYSLIN
// DD *
 INCLUDE SYSLIB(S0SKCF)
 INCLUDE SYSLIB(S0INTR)
 INCLUDE SYSLIB(RPCFDS)
 ENTRY MAIN
//

Sample JCL E–5

 Appendix

F Sample RPC Programs

This appendix contains source code listings for the four sample programs
provided as part of the RPC library. It includes the following sections:

■ Sample Programs—Provides an overview of the sample programs, including
instructions on execution

■ Sample Programs’ Source Code—Includes the code for the msgsvc, msgclnt,
sortsvc, and sortclnt sample programs

Four sample programs are provided as part of the RPC library. They are paired
into two sets with each set having a client and server program. The client of the
first pair, using the RPC library, simply sends a user selected message to the
server, which then prints the message to stderr.

The client of the second pair sends a user selected group of arguments to the
server via RPC. The server then sorts the arguments and returns the results to
the client, which then prints the sorted result to stderr.

The programs can be built using the sample JCL provided to build any RPC
library program. Once built, the server program should be started and then the
corresponding client should be started.

Sample RPC Programs F–1

Sample Programs

Sample Programs
The following sections tell you how to run the sample message and sort
programs.

To Run the Sample Message Programs

Execute the server msgsvc by calling it from TSO or batch with no parameters
CALL 'MYLOAD(MSGSVC)'

Then execute the client, msgcln, by calling it from TSO or batch with the name of
the host on which the server is running and then a message. (Use the appropriate
C compiler parameter passing conventions.)
CALL 'MYLOAD(MSGCLNT)' 'SERVERHOST HELLO'

To Run the Sample Sort Programs

Execute the server, sortsvc, by calling it from TSO or batch with no parameters.
CALL 'MYLOAD(SORTSVC)'

Then execute the client, sortclnt by calling it from TSO or batch with the name of
the host on which the server is running and then any number of string
arguments to be sorted. (Use the appropriate C compiler parameter passing
conventions.)
CALL 'MYLOAD(SORTCLNT)' 'SERVERHOST D E C B A'

F–2 RPC/XDR Programmer's Reference

Sample Programs’ Source Code

Sample Programs’ Source Code
This section includes the source code listings for the sample programs.

MSGSVC

The following is the source code listing for the msgsvc program:
#include <stdio.h>
#include <rpc.h>
#include <pmapclnt.h>
#include <msg.h>

static void messageprog_1();
static char *printmessage_1();

static struct timeval TIMEOUT = { 25, 0 };

main()
{
 SVCXPRT *transp;

 (void)pmap_unset(MESSAGEPROG, MESSAGEVERS);

 transp = svcudp_create(RPC_ANYSOCK);
 if (transp == (SVCXPRT *)NULL)
 {
 (void)fprintf(stderr, "CANNOT CREATE UDP SERVICE.\n");
 exit(16);
 }
 if (!svc_register(transp, MESSAGEPROG, MESSAGEVERS,
 messageprog_1, IPPROTO_UDP))
 {
 (void)fprintf(stderr,
 "UNABLE TO REGISTER (MESSAGEPROG, MESSAGEVERS, UDP).\n");
 exit(16);
 }

 transp = svctcp_create(RPC_ANYSOCK, 0, 0);
 if (transp == (SVCXPRT *)NULL)
 {
 (void)fprintf(stderr, "CANNOT CREATE TCP SERVICE.\n");
 exit(16);
 }
 if (!svc_register(transp, MESSAGEPROG, MESSAGEVERS,
 messageprog_1, IPPROTO_TCP))
 {
 (void)fprintf(stderr,
 "UNABLE TO REGISTER (MESSAGEPROG, MESSAGEVERS, TCP).\n");
 exit(16);
 }
 svc_run();
 (void)fprintf(stderr, "SVC_RUN RETURNED\n");
 exit(16);
 return(0);
}

static void messageprog_1(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

Sample RPC Programs F–3

Sample Programs’ Source Code

{
 union
 {
 char *printmessage_1_arg;
 }
 argument;
 char *result;
 bool_t (*xdr_argument)();
 bool_t (*xdr_result)();
 char *(*local)();

 switch (rqstp->rq_proc)
 {
 case NULLPROC:
 (void)svc_sendreply(transp, xdr_void, (char *)NULL);
 return;

 case PRINTMESSAGE:
 xdr_argument = xdr_wrapstring;
 xdr_result = xdr_int;
 local = (char *(*)()) printmessage_1;
 break;

 default:
 svcerr_noproc(transp);
 return;
 }
 bzero((char *)&argument, sizeof(argument));
 if (!svc_getargs(transp, xdr_argument, &argument))
 {
 svcerr_decode(transp);
 return;
 }
 result = (*local)(&argument, rqstp);
 if (result != (char *)NULL &&
 !svc_sendreply(transp, xdr_result, result))
 {
 svcerr_systemerr(transp);
 }
 if (!svc_freeargs(transp, xdr_argument, &argument))
 {
 (void)fprintf(stderr, "UNABLE TO FREE ARGUMENTS\n");
 exit(16);
 }
 return;
}

char *printmessage_1(msg)
char **msg;
{
 static char result;

 fprintf(stderr, "%s\n", *msg);
 result = 1;
 return(&result);
}

F–4 RPC/XDR Programmer's Reference

Sample Programs’ Source Code

MSGCLNT

The following is the source listing for the msgclnt program:
/* @(#)rprintmsg.c 2.1 88/08/11 4.0 RPCSRC */
#include <stdio.h>
#include <rpc.h>
#include <time.h>
#include <msg.h>

static struct timeval TIMEOUT = { 25, 0 };
 static int *printmessage_1();
 main(argc, argv)
int argc;
char *argv[];
{
 CLIENT *cl;
 int *result;
 char *server ;
 char *message;
 if (argc < 3)
 {
 fprintf(stderr, "USAGE: %s HOST MESSAGE\n", argv[0]);
 exit(16);
 }
 server = argv[1];
 message = argv[2];

 cl = clnt_create(server , MESSAGEPROG, MESSAGEVERS, "tcp");
 if (cl == (CLIENT *)NULL)
 {
 clnt_pcreateerror(server);
 exit(16);
 }

 result = printmessage_1(&message, cl);
 if (result == (int *)NULL)
 {
 clnt_perror(cl, server);
 exit(16);
 }

 if (*result == 0)
 {
 fprintf(stderr, "%s: SORRY, %s COULDN'T PRINT YOUR MESSAGE\n",
 argv[0], server);
 exit(16);
 }
 printf("MESSAGE DELIVERED TO %s!\n", server);
 exit(0);
 return(0);

Sample RPC Programs F–5

Sample Programs’ Source Code

}

static int *printmessage_1(argp, clnt)
char **argp;
CLIENT *clnt;
{
 static int res;

 bzero((char *)&res, sizeof(res));
 if (clnt_call(clnt, PRINTMESSAGE, xdr_wrapstring,
 argp, xdr_int, &res, TIMEOUT) != RPC_SUCCESS)
 {
 return ((int *)NULL);
 }
 return (&res);
}
SORTSVC
This is the source code listing for the sortsvc program:
#include <stdio.h>
#include <rpc.h>
#include <pmapclnt.h>
#include <sort.h>

static void sortprog_1();
static bool_t xdr_str();
static bool_t xdr_sortstrings();
static int comparestrings();
static struct sortstrings *sort_1();

main()
{
 SVCXPRT *transp;

 (void)pmap_unset(SORTPROG, SORTVERS);

 transp = svcudp_create(RPC_ANYSOCK);
 if (transp == (SVCXPRT *)NULL)
 {
 (void)fprintf(stderr, "CANNOT CREATE UDP SERVICE.\n");
 exit(16);
 }
 if (!svc_register(transp, SORTPROG, SORTVERS, sortprog_1,

F–6 RPC/XDR Programmer's Reference

Sample Programs’ Source Code

 IPPROTO_UDP))
 {
 (void)fprintf(stderr,
 "UNABLE TO REGISTER (SORTPROG, SORTVERS, UDP).\n");
 exit(16);
 }
 svc_run();
 (void)fprintf(stderr, "SVC_RUN RETURNED\n");
 exit(16);
 return(0);
}

static void sortprog_1(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;
{
 union
 {
 sortstrings sort_1_arg;
 }
 argument;

 char *result;
 bool_t (*xdr_argument)();
 bool_t (*xdr_result)();
 char *(*local)();

 switch (rqstp->rq_proc)
 {
 case NULLPROC:
 (void)svc_sendreply(transp, xdr_void, (char *)NULL);
 return;

 case SORT:
 xdr_argument = xdr_sortstrings;
 xdr_result = xdr_sortstrings;
 local = (char *(*)()) sort_1;
 break;

 default:
 svcerr_noproc(transp);
 return;
 }
 bzero((char *)&argument, sizeof(argument));
 if (!svc_getargs(transp, xdr_argument, &argument))
 {
 svcerr_decode(transp);
 return;
 }
 result = (*local)(&argument, rqstp);
 if (result != (char *)NULL &&
 !svc_sendreply(transp, xdr_result, result))
 {
 svcerr_systemerr(transp);
 }
 if (!svc_freeargs(transp, xdr_argument, &argument))
 {
 (void)fprintf(stderr, "UNABLE TO FREE ARGUMENTS\n");
 exit(16);
 }
 return;
}

Sample RPC Programs F–7

Sample Programs’ Source Code

static int comparestrings(sp1, sp2)
char **sp1;
char **sp2;
{
 return (strcmp(*sp1, *sp2));
}

static struct sortstrings *sort_1(ssp)
struct sortstrings *ssp;
{
 static struct sortstrings ss_res;

 if (ss_res.ss.ss_val != (str *)NULL)
 {
 free(ss_res.ss.ss_val);
 }

 qsort(ssp->ss.ss_val, ssp->ss.ss_len, sizeof(char *), comparestrings);
 ss_res.ss.ss_len = ssp->ss.ss_len;
 ss_res.ss.ss_val =
 (str *)malloc(ssp->ss.ss_len * sizeof(str *));
 bcopy(ssp->ss.ss_val, ss_res.ss.ss_val,
 ssp->ss.ss_len * sizeof(str *));
 return(&ss_res);
}

static bool_t xdr_str(xdrs, objp)
XDR *xdrs;
str *objp;

{
 if (!xdr_string(xdrs, objp, MAXSTRINGLEN))
 {
 return (FALSE);
 }
 return (TRUE);
}

static bool_t xdr_sortstrings(xdrs, objp)
XDR *xdrs;
sortstrings *objp;
{
 if (!xdr_array(
 xdrs, (char **)&objp->ss.ss_val,
 (u_int *)&objp->ss.ss_len, MAXSORTSIZE,
 sizeof(str), xdr_str))
 {
 return (FALSE);
 }
 return (TRUE);
}

F–8 RPC/XDR Programmer's Reference

Sample Programs’ Source Code

SORTCLNT

This is the source code listing for the sortclnt program:
/* @(#)rsort.c 2.1 88/08/11 4.0 RPCSRC */
#include <stdio.h>
#include <rpc.h>
#include <sort.h>

static bool_t xdr_sortstrings();
static bool_t xdr_str();
static sortstrings *sort_1();
main(argc, argv)
int argc;
char **argv;
{
 char *machinename;
 struct sortstrings args;
 struct sortstrings res;
 int i;
 if (argc < 3)
 {
 fprintf(stderr, "USAGE: %s MACHINENAME {S1 ...}\n", argv[0]);
 exit(16);
 }
 machinename = argv[1];
 args.ss.ss_len = argc - 2;
 args.ss.ss_val = &argv[2];
 res.ss.ss_val = (char **)NULL;
 if ((i = callrpc(machinename, SORTPROG, SORTVERS, SORT,
 xdr_sortstrings, (char *)&args, xdr_sortstrings, (char *)&res)))
 {
 fprintf(stderr, "%s: CALL TO SORT SERVICE FAILED. ", argv[0]);
 clnt_perrno(i);
 fprintf(stderr, "\n");
 exit(16);

Sample RPC Programs F–9

Sample Programs’ Source Code

 }

 for (i = 0; i < res.ss.ss_len; i++)
 {
 printf("%s\n", res.ss.ss_val[i]);
 }

 exit(0);
 return(0);
}

static struct timeval TIMEOUT = { 25, 0 };

static sortstrings *sort_1(argp, clnt)
sortstrings *argp;
CLIENT *clnt;
{
 static sortstrings res;

 bzero((char *)&res, sizeof(res));
 if (clnt_call(clnt, SORT, xdr_sortstrings, argp,
 xdr_sortstrings, &res, TIMEOUT) != RPC_SUCCESS)
 {
 return ((sortstrings *)NULL);
 }
 return (&res);
}

static bool_t xdr_str(xdrs, objp)
XDR *xdrs;
str *objp;
{
 if (!xdr_string(xdrs, objp, MAXSTRINGLEN))
 {
 return (FALSE);
 }
 return (TRUE);
}

static bool_t xdr_sortstrings(xdrs, objp)
XDR *xdrs;
sortstrings *objp;
{
 if (!xdr_array(
 xdrs, (char **)&objp->ss.ss_val,
 (u_int *)&objp->ss.ss_len, MAXSORTSIZE,
 sizeof(str), xdr_str))
 {
 return (FALSE);
 }
 return (TRUE);
}

F–10 RPC/XDR Programmer's Reference

 Index–1

 Index

#define’s for rpcgen, 4-12

#include files, C-1

A

array filters, 3-13

auth_destroy(), A-2

authentication
calls

auth_destroy(), A-2
authnone_create(), A-2
authunix_create(), A-3
authunix_create_default(), A-3

DES, 2-30
description, 2-27
rq_cred struct, 2-28
UNIX, 2-27
use with lowest layer of RPC, 2-14

authnone_create(), A-2

authunix_create(), A-3

authunix_create_default(), A-3

B

batching
client, 2-25
description, 2-23
server, 2-23

big-endian, 3-5

broadcast RPC
clnt_broadcast(), A-5
description, 2-22

byte array filters, 3-12

C

C preprocessor, 4-12

callback procedures, 2-38

callrpc(), 2-2, 2-6, 2-7, A-4

CLIENT pointer, 2-19

clnt.h, C-1

clnt_broadcast(), A-5

clnt_call(), A-6

clnt_control(), A-7

clnt_create(), A-8

clnt_destroy(), 2-20, A-8

clnt_freeres(), A-9

clnt_geterr(), A-9

clnt_pcreateerror(), A-10

clnt_perrno(), A-10

clnt_perror(), A-11

clnt_specreaterror(), A-11

clnt_sperrno(), A-12

clnt_sperror(), A-12

clntraw_create(), A-13

clnttcp_create(), 2-15, 2-20, A-14

clntudp_create(), 2-15, 2-20, A-15

constructed data filters, 3-11

Index–2 TCPaccess Assembler API Concepts

D

DES authentication, 2-30

deserialize, 2-11, 2-18, 2-35, 3-7

discriminated union filter, 3-17

dispatcher, 2-9

E

ECB, 2-21, A-18

enumeration filters, 3-10

External Data Representation. See XDR, 1-2

F

filters
array, 3-13
byte array, 3-12
constructed data, 3-11
discriminated union, 3-17
enumeration, 3-10
fixed-length array, 3-16
floating point, 3-10
no data, 3-11
number, 3-9
pointer, 3-18
string, 3-11
union, 3-17
void, 3-11

fixed-length array filter, 3-16

floating point filters, 3-10

function
format, A-1, B-1

G

generation of XDR routines, 4-8

get_myaddress(), A-16

getrpcbyname(), A-16

getrpcbynumber(), A-17

gettransient(), 2-39

H

handle
authentication, 2-27, 2-30
client, 2-27
transport, 2-15
XDR, 2-13

header files
auth.h, C-1
authunix.h, C-1
clnt.h, C-1
pmapclnt.h, C-1
pmapprot.h, C-1
pmaprmt.h, C-1
rpc.h, C-1, C-2
rpcget.h, C-2
rpcmsc.h, C-2
rpcmsg.h, C-2
svc.h, C-2
svcauth.h, C-2
svccall.h, C-2
svcrpc.h, C-2
svctcp.h, C-3
xdrrst.h, C-3
xdrtypes.h, C-3
xrd.h, C-3

highest layer of RPC, 2-2

I

include files, C-1

inetd, 2-33

input to rpcgen, 4-4

intermediate layer of RPC, 2-2, 2-6

J

JCL
IBM C/370 compiler

nonreentrant, E-2
reentrant, E-3

SAS/C compiler
nonreentrant, E-4
reentrant, E-5

 Index–3

L

layers of RPC
highest, 2-2, 2-4
intermediate, 2-2, 2-6
lowest, 2-3, 2-14

linked lists, 3-25

local procedures, 4-1, 4-3

lowest layer of RPC, 2-3, 2-14

M

memory allocation, 2-14, 2-17, 2-18

memory streams, 3-21

mvs_svc_run(), 2-21, A-18

N

no data filters, 3-11

non-filter primitives, 3-20

number filters, 3-9

O

output from rpcgen, 4-7

P

performance improvement, 2-23

pipeline, 2-23

pipes, 3-3

pmap_getmaps(), A-18

pmap_getport(), A-19

pmap_rmtcall(), A-20

pmap_set(), A-21

pmap_unset(), 2-16, A-22

pmapclnt.h, C-1

pmapprot.h, C-1

pmaprmt.h, C-1

pointer filter, 3-18

port mapper
header file for, C-1
operation, 2-22
operation of, 2-16
use with svc_register(), 2-15

procedure number, 2-6

program number, 2-6, 2-10

R

rcp, 2-35

record stream, 3-21

registering RPC calls, 2-8

registerrpc(), 2-2, 2-6, 2-9, 2-16, A-23

remote debugging, 2-38

remote procedure, 4-5

Remote Procedure Call. See RPC., 1-1

retries, 2-7

RPC
call registration, 2-8
callback procedures, 2-38
description, 1-1
language, 4-16
layers, 2-2
service library routines, 2-4

rpc.h, C-2

rpc_createerr, A-24

rpcgen
#define’s for, 4-12
description, 4-1
execution of, 4-7
input to, 4-4
output from, 4-7
preprocessing by, 4-13
time-out changes, 4-13

rpcget.h, C-2

rpcmsc.h, C-2

rpcmsg.h, C-2

Index–4 TCPaccess Assembler API Concepts

S

sample programs
description of, F-1
message client (msgclnt), F-5
message server (msgsvc), F-3
sort client (sortclnt), F-9
sort server(sortsvc), F-6

security, 2-27

select(), 2-21

serialize, 2-11, 2-18, 2-35, 3-7

sockets, 2-14, 2-15, 2-18, 2-20, 2-21, 2-38

standard I/Ostreams, 3-21

static variables
use of, 2-9

streams
memory, 3-21
record, 3-21
standard I/O, 3-21
TCP, 2-20, 3-21
XDR, 3-20, 3-23

string filters, 3-11

svc.h, C-2

svc_destroy(), A-24

svc_fdset, A-25

svc_freeargs(), A-25

svc_getargs(), A-26

svc_getcaller(), A-26

svc_getreq(), A-27

svc_getreqset(), A-27

svc_register(), 2-15, 2-16, A-28

svc_run(), 2-2, 2-9, A-29

svc_sendreply(), A-29

svc_unregister(), A-30

svcauth.h, C-2

svccall.h, C-2

svcerr_auth(), A-31

svcerr_decode(), A-31

svcerr_noproc(), A-32

svcerr_noprog(), A-32

svcerr_progvers(), A-33

svcerr_systemerr(), A-33

svcerr_weakauth(), A-30

svcfd_create(), A-34

svcraw_create(), A-34

svcrpc.h, C-2

svctcp.h, C-3

svctcp_create(), A-35

svcudp_create(), A-36

T

TCP
Transmission Control Protocol

specifying, 2-14, 2-35
streams, 3-21

timeout, 2-2, 2-20, 2-25

transport
choice of, 2-2
handle, 2-15

U

UDP
User Datagram Protocol, 2-14

union filter, 3-17

UNIX authentication, 2-27

V

version number, 2-6, 2-34

void filters, 3-11

 Index–5

X

XDR
description, 1-2
External Data Representation, 1-2
routine generation, 4-8
streams, 3-20, 3-23

xdr_accepted_reply(), A-36

xdr_array(), 2-17, B-2

xdr_authunix_parms(), A-37

xdr_bool(), B-3

xdr_bytes(), B-3

xdr_callhdr(), A-37

xdr_callmsg(), A-38

xdr_char(), B-4

xdr_destroy(), B-4

xdr_double(), B-5

xdr_float(), B-6

xdr_free(), B-6

xdr_getpos(), B-7

xdr_inline(), B-7

xdr_int(), B-8

xdr_long(), B-8

xdr_opaque(), B-9

xdr_opaque_auth(), A-38

xdr_pmap(), A-39

xdr_pmaplist(), A-40

xdr_reference(), 2-13, B-11

xdr_rejected_reply(), A-40

xdr_replymsg(), A-41

xdr_setpos(), B-12

xdr_short(), B-12

xdr_string(), 2-13, B-13

xdr_u_char(), B-13

xdr_u_int(), B-14

xdr_u_long(), B-14

xdr_u_short(), B-15

xdr_union(), B-16

xdr_vector(), B-17

xdr_void(), B-17

xdr_wrap_string(), 3-15

xdr_wrapstring(), B-18

xdrmem_create(), B-18

xdrrec_create(), B-19

xdrrec_endofrecord(), B-20

xdrrec_eof(), B-20

xdrrec_skiprecord(), B-21

xdrrst.h, C-3

xdrstdio_create(), B-21

xdrtypes.h, C-3

xprt_register(), A-41

xprt_unregister(), A-42

xrd.h, C-3

	RPC/XDR Programmer’s Reference
	Contents
	Chapter 1: Introduction to RPC/XDR
	Remote Procedure Call (RPC)
	External Data Representation (XDR)

	Chapter 2: Using Remote Procedure Calls
	RPC Layers
	The Highest Layer
	The Middle Layer
	The Lowest Layer

	The RPC Paradigm
	Higher Layers of RPC
	Highest Layer
	RPC Service Library
	Intermediate Layer
	Unique RPC Procedure Definition
	The callrpc Library Routine
	Registering RPC Calls

	Assigning Program Numbers
	Passing Arbitrary Data Types
	Prefabricated Building Blocks

	Lowest Layer of RPC
	More on the Server Side
	The Server Gets a Transport Handle
	The Server Calls pmap_unset
	The Program Number is Associated with the nuser Procedure
	Handling an RPC Program that Receives Data

	Memory Allocation with XDR
	The Calling Side
	The CLIENT Pointer

	Useful RPC Features
	Select on the Server Side
	Broadcast RPC
	Broadcast RPC Synopsis

	Batching
	Server Batching
	Client Batching

	Authentication
	UNIX Authentication
	DES Authentication

	Using Inetd

	Programming Examples
	Versions
	TCP
	Callback Procedures
	Client
	Server

	Chapter 3: XDR: Technical Notes
	Justification
	Writer
	Reader
	Execution Results
	Network Pipes
	Revised Writer
	Revised Reader
	Revised Execution Results

	A Canonical Standard
	The XDR Library
	The xdr_long Primitive
	Direction Independence

	XDR Library Primitives
	Number Filters
	Floating Point Filters
	Enumeration Filters
	No Data
	Constructed Data Type Filters
	Strings
	Byte Arrays
	Arrays
	Opaque Data
	Fixed Sized Arrays
	Discriminated Unions
	Pointers

	Non-Filter Primitives
	XDR Operation Directions
	XDR Stream Access
	Standard I/O Streams
	Memory Streams
	Record (TCP/IP) Streams

	XDR Stream Implementation
	The XDR Object

	Advanced Topics
	Linked Lists
	Serialized Objects

	Hints for Writing XDR Routines
	A Non-Recursive Example
	Tasks Performed

	Chapter 4: Using rpcgen
	What rpcgen Does
	How rpcgen Works

	Converting Local Procedures into Remote Procedures
	A printmessage Example
	Remote Procedures Steps
	Determine Procedure Input and Output Types
	The Remote Procedure
	Declare the Main Client Program

	Completing the Process

	Generating XDR Routines
	Protocol Description File
	XDR Routines for Converting Data Types
	The READDIR Procedure
	The Client-Side Program to Call the Server
	Compiling and Running

	Testing the Client and Server Procedures Together

	The C Preprocessor
	Symbols That May Be Defined
	rpcgen Preprocessing

	rpcgen Programming Notes
	Timeout Changes
	Handling Broadcast on the Server Side
	Other Information Passed to Server Procedures

	The RPC Language
	Definitions
	Structures
	Unions
	Enumerations
	Typedefs
	Constants
	Programs
	Declarations
	Simple Declarations
	Fixed-length Array Declarations
	Variable-Length Array Declarations
	Pointer Declarations

	Special Cases
	Booleans
	Strings
	Opaque Data
	Voids

	Appendix A: RPC Manual Pages
	RPC Library Functions
	auth_destroy()
	authnone_create()
	authunix_create()
	authunix_create_default()
	callrpc()
	clnt_broadcast()
	clnt_call()
	clnt_control()
	clnt_create()
	clnt_destroy()
	clnt_freeres()
	clnt_geterr()
	clnt_pcreateerror()
	clnt_perrno()
	clnt_perror()
	clnt_specreaterror()
	clnt_sperrno()
	clnt_sperror()
	clntraw_create()
	clnttcp_create()
	clntudp_create()
	get_myaddress()
	getrpcbyname()
	getrpcbynumber()
	mvs_svc_run()
	pmap_getmaps()
	pmap_getport()
	pmap_rmtcall()
	pmap_set()
	pmap_unset()
	registerrpc()
	rpc_createerr
	svc_destroy()
	svc_fdset
	svc_freeargs()
	svc_getargs()
	svc_getcaller()
	svc_getreq()
	svc_getreqset()
	svc_register()
	svc_run()
	svc_sendreply()
	svc_unregister()
	svcerr_weakauth()
	svcerr_auth()
	svcerr_decode()
	svcerr_noproc()
	svcerr_noprog()
	svcerr_progvers()
	svcerr_systemerr()
	svcfd_create()
	svcraw_create()
	svctcp_create()
	svcudp_create()
	xdr_accepted_reply()
	xdr_authunix_parms()
	xdr_callhdr()
	xdr_callmsg()
	xdr_opaque_auth()
	xdr_pmap()
	xdr_pmaplist()
	xdr_rejected_reply()
	xdr_replymsg()
	xprt_register()
	xprt_unregister()

	Appendix B: XDR Manual Pages
	XDR Library Calls
	xdr_array()
	xdr_bool()
	xdr_bytes()
	xdr_char()
	xdr_destroy()
	xdr_double()

	xdr_enum()
	xdr_float()
	xdr_free()
	xdr_getpos()
	xdr_inline()
	xdr_int()
	xdr_long()
	xdr_opaque()
	xdr_pointer()
	xdr_reference()
	xdr_setpos()
	xdr_short()
	xdr_string()
	xdr_u_char()
	xdr_u_int()
	xdr_u_long()
	xdr_u_short()
	xdr_union()
	xdr_vector()
	xdr_void()
	xdr_wrapstring()
	xdrmem_create()
	xdrrec_create()
	xdrrec_endofrecord()
	xdrrec_eof()
	xdrrec_skiprecord()
	xdrstdio_create()

	Appendix C: RPC Library Header Files
	Header Files

	Appendix D: RPC Log
	RPC Log Interface
	Source for Default rpclog

	Appendix E: Sample JCL
	Nonreentrant User Program: C/370 Compiler
	Reentrant User Program: C/370 Compiler
	Nonreentrant User Program: SAS/C Compiler
	Reentrant User Program: SAS/C Compiler

	Appendix F: Sample RPC Programs
	Sample Programs
	To Run the Sample Message Programs
	To Run the Sample Sort Programs

	Sample Programs’ Source Code
	MSGSVC
	MSGCLNT
	SORTCLNT

	Index

	booklist:

